
The value of $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$is equal to:
A.$\frac{2}{3}$
B.$\frac{1}{2}$
C.$\frac{1}{8}$
D.\[\frac{1}{3}\]
Answer
558.9k+ views
Use $\sin a\sin b$ formula in the first pair and $\sin ({90^ \circ } - \theta )$formula In the third try and try to solve.
Consider the given expression: $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$.We know the formula:
$\sin a\sin b = \frac{1}{2}[\cos (a - b) - \cos (a + b)]$, where consider,$a = {48^ \circ },b = {12^ \circ }$. Putting the values in the given expression will give us,
$
(\sin {12^ \circ }\sin {48^ \circ })\sin {54^ \circ } \\
\Rightarrow \frac{1}{2}(\cos ({48^ \circ } - {12^ \circ }) - \cos ({48^ \circ } + {12^ \circ }))\sin ({90^ \circ } - {36^ \circ })\;{\text{ [Using }}\sin a\sin b{\text{ and sin(}}{90^ \circ } - \theta {\text{) formula]}} \\
\Rightarrow \frac{1}{2}(\cos {36^ \circ } - \cos {60^ \circ })\cos {36^ \circ }{\text{ [}}\cos ( - x) = \cos x{\text{ and }}\sin ({90^ \circ } - x) = \cos x{\text{]}} \\
\Rightarrow \frac{1}{2}(\frac{{\sqrt 5 + 1}}{4} - \frac{1}{2})(\frac{{\sqrt 5 + 1}}{4}){\text{ [}}\cos {36^ \circ } = \frac{{\sqrt 5 + 1}}{4}{\text{]}} \\
\Rightarrow \frac{1}{{2 \times 4 \times 4}}(\sqrt 5 + 1 - 2)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}(\sqrt 5 - 1)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}({(\sqrt 5 )^2} - {1^2}){\text{ [}}{a^2} - {b^2} = (a + b)(a - b){\text{]}} \\
\Rightarrow \frac{1}{{32}}(5 - 1) \\
\Rightarrow \frac{1}{{32}} \times 4 \\
\Rightarrow \frac{1}{8} \\
$
And hence,$\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ } = \frac{1}{8}$
Note: Always try to use pairing of angles and find, which formula is suitable to start with. Once you start with the correct formula solution becomes easy.
Consider the given expression: $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$.We know the formula:
$\sin a\sin b = \frac{1}{2}[\cos (a - b) - \cos (a + b)]$, where consider,$a = {48^ \circ },b = {12^ \circ }$. Putting the values in the given expression will give us,
$
(\sin {12^ \circ }\sin {48^ \circ })\sin {54^ \circ } \\
\Rightarrow \frac{1}{2}(\cos ({48^ \circ } - {12^ \circ }) - \cos ({48^ \circ } + {12^ \circ }))\sin ({90^ \circ } - {36^ \circ })\;{\text{ [Using }}\sin a\sin b{\text{ and sin(}}{90^ \circ } - \theta {\text{) formula]}} \\
\Rightarrow \frac{1}{2}(\cos {36^ \circ } - \cos {60^ \circ })\cos {36^ \circ }{\text{ [}}\cos ( - x) = \cos x{\text{ and }}\sin ({90^ \circ } - x) = \cos x{\text{]}} \\
\Rightarrow \frac{1}{2}(\frac{{\sqrt 5 + 1}}{4} - \frac{1}{2})(\frac{{\sqrt 5 + 1}}{4}){\text{ [}}\cos {36^ \circ } = \frac{{\sqrt 5 + 1}}{4}{\text{]}} \\
\Rightarrow \frac{1}{{2 \times 4 \times 4}}(\sqrt 5 + 1 - 2)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}(\sqrt 5 - 1)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}({(\sqrt 5 )^2} - {1^2}){\text{ [}}{a^2} - {b^2} = (a + b)(a - b){\text{]}} \\
\Rightarrow \frac{1}{{32}}(5 - 1) \\
\Rightarrow \frac{1}{{32}} \times 4 \\
\Rightarrow \frac{1}{8} \\
$
And hence,$\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ } = \frac{1}{8}$
Note: Always try to use pairing of angles and find, which formula is suitable to start with. Once you start with the correct formula solution becomes easy.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
