
How much time will it take for the solar radiation to reach Mars?
(A)10 min
(B)12.6 min
(C)15 min
(D)14.8 min

Answer
477k+ views
Hint :In order to solve this question, we are going to first what distance the light needs to travel to cover the orbital radius of Mars. Then, by using the standard value of the speed of the light, we can very easily determine the time taken by the solar radiation to reach the planet Mars.
If $ s $ is the distance which a planet covers with the speed $ v $ , then, the time taken is given by
$ t = \dfrac{s}{v} $
Complete Step By Step Answer:
In this question, the distance which is required by the light to travel is equal to the orbital radius of the Mars which is equal to $ 2.28 \times {10^{11}}m $ where for approximately circular orbits the orbital radius is the distance from an object in space to the body which it is orbiting.
Now, as we know that the speed with which the light travels in the vacuum is given by the value $ 3 \times {10^8}m{s^{ - 1}} $
Thus, the time taken by the solar radiation to reach the planet Mars is calculated as
$ t = \dfrac{{2.28 \times {{10}^{11}}m}}{{3 \times {{10}^8}m{s^{ - 1}}}} = 0.76 \times {10^3}s \\
\Rightarrow t = 760s $
Converting this time into minutes, we get
$ \Rightarrow t = 12\min 40s = 12.67\min $
Hence, option $ (B)12.6\min $ is the correct answer.
Note :
In orbital mechanics, the Hohmann Transfer orbit is an elliptical orbit used to transfer between two circular orbits of different radii around a central body in the same plane. The Hohmann transfer often uses the lowest possible amount of propellant in traveling between these orbits, but bi-elliptic transfers can use less in some cases.
If $ s $ is the distance which a planet covers with the speed $ v $ , then, the time taken is given by
$ t = \dfrac{s}{v} $
Complete Step By Step Answer:
In this question, the distance which is required by the light to travel is equal to the orbital radius of the Mars which is equal to $ 2.28 \times {10^{11}}m $ where for approximately circular orbits the orbital radius is the distance from an object in space to the body which it is orbiting.
Now, as we know that the speed with which the light travels in the vacuum is given by the value $ 3 \times {10^8}m{s^{ - 1}} $
Thus, the time taken by the solar radiation to reach the planet Mars is calculated as
$ t = \dfrac{{2.28 \times {{10}^{11}}m}}{{3 \times {{10}^8}m{s^{ - 1}}}} = 0.76 \times {10^3}s \\
\Rightarrow t = 760s $
Converting this time into minutes, we get
$ \Rightarrow t = 12\min 40s = 12.67\min $
Hence, option $ (B)12.6\min $ is the correct answer.
Note :
In orbital mechanics, the Hohmann Transfer orbit is an elliptical orbit used to transfer between two circular orbits of different radii around a central body in the same plane. The Hohmann transfer often uses the lowest possible amount of propellant in traveling between these orbits, but bi-elliptic transfers can use less in some cases.
Recently Updated Pages
NCERT Solutions For Class 4 English Marigold (Poem) - Don’t Be Afraid Of The Dark

NCERT Solutions For Class 5 English Marigold (Poem) - Class Discussion

NCERT Solutions For Class 5 English Marigold - Gullivers Travels

NCERT Solutions For Class 5 Hindi Rimjhim - Bagh Aaya Uss Raat

NCERT Solutions For Class 8 Hindi Bharat Ki Khoj - Tanaav

NCERT Solutions For Class 12 Maths - Differential Equations

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
