
Using trapezoidal rule, by dividing the interval [0, 4] into 4 equal parts, the approximate value of \[\int\limits_{0}^{4}{{{x}^{2}}+1}\] is equal to
(a) 25
(b) 26
(c) 27
(d) 28
Answer
550.8k+ views
Hint: Divide the interval into 4 parts thus find the sub interval of width \[\Delta x\], Now use the trapezoidal rule formula for 4 equal parts. Substitute x = 0, 1, 2, 3, 4 in f (x) get the values and substitute in the formula.
Complete step-by-step solution -
Trapezoidal rule is used for approximating the definite integrals where it uses the linear approximations of the function. Let f (x) be a continuous function on the interval [a, b] which is [0, 4]. Now divide the intervals [0, 4] into n equal subintervals with each of width, \[\Delta x\] i.e. n = 4.
\[\Delta x=\dfrac{b-a}{n}=\dfrac{4-0}{4}=\dfrac{4}{4}=1\]
Here, n = 4, as it is told to divide interval into 4 equal parts,
Here, \[f\left( x \right)=\int\limits_{0}^{4}{{{x}^{2}}+1}dx\]
Then the trapezoidal rule formula for area approximating the definite integral, \[\int\limits_{a}^{b}{f\left( x \right)}dx\] is given by,
\[\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+.....+2f\left( {{x}_{n-1}} \right)+f\left( {{x}_{n}} \right) \right]\] where, \[{{x}_{i}}=a+i\Delta x\].
\[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \]...........(1)
Now let us find the values of \[f\left( {{x}_{0}} \right),f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right),f\left( {{x}_{3}} \right)\] and \[f\left( {{x}_{4}} \right)\], when x = 0,1,2,3,4 \[f\left( {{x}_{0}} \right)=f\left( 0 \right)={{x}^{2}}+1=0+1=1\].
\[\begin{align}
& f\left( {{x}_{1}} \right)=f\left( 1 \right)={{x}^{2}}+1={{1}^{2}}+1=2 \\
& f\left( {{x}_{2}} \right)=f\left( 2 \right)={{2}^{2}}+1=4+1=5 \\
& f\left( {{x}_{3}} \right)=f\left( 3 \right)={{3}^{2}}+1=9+1=10 \\
& f\left( {{x}_{4}} \right)=f\left( 4 \right)={{4}^{2}}+1=16+1=17 \\
\end{align}\]
Thus we got \[f\left( {{x}_{0}} \right)=1,f\left( {{x}_{1}} \right)=2,f\left( {{x}_{2}} \right)=5,f\left( {{x}_{3}} \right)=10\] and \[f\left( {{x}_{4}} \right)=17,\Delta x=1\].
Now let us substitute these values in equation (1).
\[\begin{align}
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+\left( 2\times 2 \right)+\left( 2\times 5 \right)+\left( 2\times 10 \right)+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+4+10+20+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\times 52=26 \\
\end{align}\]
Thus by dividing the interval [0, 4] into 4equal parts, the approximate value \[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=26\].
\[\therefore \] Option (b) is the correct answer.
Note: Trapezoidal rule integration works by approximating the region under the graph of a function as a trapezoid and calculating the area. If we compare trapezoidal rule to Simpson’s rule, trapezoidal rule doesn’t give accurate value, it is because trapezoidal rule uses linear approximations.
Complete step-by-step solution -
Trapezoidal rule is used for approximating the definite integrals where it uses the linear approximations of the function. Let f (x) be a continuous function on the interval [a, b] which is [0, 4]. Now divide the intervals [0, 4] into n equal subintervals with each of width, \[\Delta x\] i.e. n = 4.
\[\Delta x=\dfrac{b-a}{n}=\dfrac{4-0}{4}=\dfrac{4}{4}=1\]
Here, n = 4, as it is told to divide interval into 4 equal parts,
Here, \[f\left( x \right)=\int\limits_{0}^{4}{{{x}^{2}}+1}dx\]
Then the trapezoidal rule formula for area approximating the definite integral, \[\int\limits_{a}^{b}{f\left( x \right)}dx\] is given by,
\[\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+.....+2f\left( {{x}_{n-1}} \right)+f\left( {{x}_{n}} \right) \right]\] where, \[{{x}_{i}}=a+i\Delta x\].
\[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \]...........(1)
Now let us find the values of \[f\left( {{x}_{0}} \right),f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right),f\left( {{x}_{3}} \right)\] and \[f\left( {{x}_{4}} \right)\], when x = 0,1,2,3,4 \[f\left( {{x}_{0}} \right)=f\left( 0 \right)={{x}^{2}}+1=0+1=1\].
\[\begin{align}
& f\left( {{x}_{1}} \right)=f\left( 1 \right)={{x}^{2}}+1={{1}^{2}}+1=2 \\
& f\left( {{x}_{2}} \right)=f\left( 2 \right)={{2}^{2}}+1=4+1=5 \\
& f\left( {{x}_{3}} \right)=f\left( 3 \right)={{3}^{2}}+1=9+1=10 \\
& f\left( {{x}_{4}} \right)=f\left( 4 \right)={{4}^{2}}+1=16+1=17 \\
\end{align}\]
Thus we got \[f\left( {{x}_{0}} \right)=1,f\left( {{x}_{1}} \right)=2,f\left( {{x}_{2}} \right)=5,f\left( {{x}_{3}} \right)=10\] and \[f\left( {{x}_{4}} \right)=17,\Delta x=1\].
Now let us substitute these values in equation (1).
\[\begin{align}
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+\left( 2\times 2 \right)+\left( 2\times 5 \right)+\left( 2\times 10 \right)+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+4+10+20+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\times 52=26 \\
\end{align}\]
Thus by dividing the interval [0, 4] into 4equal parts, the approximate value \[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=26\].
\[\therefore \] Option (b) is the correct answer.
Note: Trapezoidal rule integration works by approximating the region under the graph of a function as a trapezoid and calculating the area. If we compare trapezoidal rule to Simpson’s rule, trapezoidal rule doesn’t give accurate value, it is because trapezoidal rule uses linear approximations.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
