Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Application of Integrals Class 12 Notes: CBSE Maths Chapter 8

ffImage
banner

Class 12 Maths Chapter 8 Application of Integrals Notes FREE PDF Download

Improve your understanding of Class 12 Maths Chapter 8 Application of Integrals with our FREE PDF download. This chapter includes practical uses of integrals, including calculating areas under curves and solving real-world problems. Our notes provide clear explanations, essential formulas, and step-by-step solutions to help you master the application of integrals. Download the PDF now to access a valuable resource for improving in your exams.


Take advantage of the FREE PDF download to access these valuable resources anytime, anywhere. Visit our pages to get your Class 12 Maths Notes and check out the Class 12 Maths Syllabus to stay on track with your studies.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access Revision Notes for Class 12 Maths Chapter 8 Application of Integrals

Definite Integration 

1. Definition:

If \[\text{ }\!\!~\!\!\text{ F}\left( \text{x} \right)\] is an antiderivative of \[\text{f}\left( \text{x} \right)\text{,}\] then \[\text{ }\!\!~\!\!\text{ F}\left( \text{b} \right)\text{--F}\left( \text{a} \right)\] is known as the definite integral of \[\text{f}\left( \text{x} \right)\] from $\text{a}$ to $\text{b}$, such that the variable \[\text{x,}\] takes any two independent  values say \[\text{a}\] and \[\text{b}\].

This is also denoted as  $\int_{\text{a}}^{\text{b}}{\text{f(x)dx}}$. 

Thus $\int_{\text{a}}^{\text{b}}{\text{f(x)dx}}=\text{F}\left( \text{b} \right)-\text{F}\left( \text{a} \right)$, The numbers $\text{a}$ and $\text{b}$ are called the limits of integration; $\text{a}$ is the lower limit and $\text{b}$ is the upper limit. Usually $\text{F}\left( \text{b} \right)-\text{F}\left( \text{a} \right)$ is abbreviated by writing $\text{F}\left( \text{x} \right)\left| _{\text{a}}^{\text{b}} \right.$.


2. Properties of Definite Integrals:

l. $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx=}-\int\limits_{\text{b}}^{\text{a}}{\text{f(x)}}}$ 

ll. $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx=}\int\limits_{\text{b}}^{\text{a}}{\text{f(y)}}}\text{dy}$ 

lll. $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx=}\int\limits_{\text{a}}^{\text{c}}{\text{f(x)dx+}\int\limits_{\text{c}}^{\text{b}}{\text{f(x)dx}}}}$, where $\text{c}$ may or may not lie between $\text{a}$ and $\text{b}$.

lV. $\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx=}\int\limits_{\text{0}}^{\text{a}}{\text{f(a}-\text{x)dx}}}$ 

V. $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx=}\int\limits_{\text{a}}^{\text{b}}{\text{f(a+b}-\text{x)dx}}}$ 

Note:

  1. $\int\limits_{\text{0}}^{\text{a}}{\dfrac{\text{f(x)}}{\text{f(x)+f(a}-\text{x)}}}\text{dx=}\dfrac{\text{a}}{\text{2}}$ 

  2. $\int\limits_{\text{a}}^{\text{b}}{\dfrac{\text{f(x)}}{\text{f(x)+f(a+b}-\text{x)}}}\text{dx=}\dfrac{\text{b}-\text{a}}{\text{2}}$ 

Vl. $\int\limits_{\text{0}}^{\text{2a}}{\text{f(x)dx=}\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx+}\int\limits_{\text{0}}^{\text{a}}{\text{f(2a}-\text{x)dx}}}}$ 

$\text{=}\left\{ \begin{matrix} \text{0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{if}\,\text{f(2a}-\text{x)}=-\text{f(x)}  \\ \text{2}\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx}\,\,\,\,\,\,\,\,\,\,\,\,\text{if}\,\text{f(2a}-\text{x)}=\text{f(x)}}  \\ \end{matrix} \right\}$ 

Vll. \[\int\limits_{\text{-a}}^{\text{a}}{\text{f(x)dx}=\left\{ \begin{matrix} \text{2}\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx}\,\,\,\,\,\,\,\,\,\,\text{if}\,\text{f(}-\text{x)}=\text{f(x)}\,\text{i}\text{.e}\text{.}\,\text{f(x)}\,\text{is}\,\text{even}}  \\ \text{0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{if}\,\text{f(}-\text{x)}=-\text{f(x)}\,\text{i}\text{.e}\text{.}\,\text{f(x)}\,\text{is}\,\text{odd}  \\ \end{matrix} \right\}}\] 

Vlll. If $\text{f(x)}$ is a periodic function of period $\text{ }\!\!'\!\!\text{ a }\!\!'\!\!\text{ }$, i.e. $\text{f(a}+\text{x)}=\text{f(x)}$, then

  1. $\int\limits_{\text{0}}^{\text{na}}{\text{f(x)dx}=\text{n}\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx}}}$ 

  2. $\int\limits_{\text{0}}^{\text{na}}{\text{f(x)dx}=\left( \text{n}-1 \right)\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx}}}$ 

  3. $\int\limits_{\text{na}}^{\text{b+na}}{\text{f(x)dx}=\int\limits_{\text{0}}^{\text{b}}{\text{f(x)dx}}}$, where $\text{b}\in \text{R}$ 

  4. $\int\limits_{\text{b}}^{\text{b+a}}{\text{f(x)dx}}$ independent of $\text{b}$.

  5. $\int\limits_{\text{b}}^{\text{b+na}}{\text{f(x)dx}=\text{n}\int\limits_{\text{0}}^{\text{a}}{\text{f(x)dx}}}$, where $\text{n}\in \text{1}$ 

lX. If $\text{f(x)}\ge \text{0}$ on the interval $\left[ \text{a,b} \right]$, then $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}}\ge 0$.

X. If $\text{f(x)}\le \text{g(x)}$ on the interval $\left[ \text{a,b} \right]$, then $\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}}\le \int\limits_{\text{a}}^{\text{b}}{\text{g(x)dx}}$ 

X. $\left| \int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}} \right|\le \int\limits_{\text{a}}^{\text{b}}{\left| \text{f(x)} \right|\text{dx}}$ 

Xl.  If $\text{f(x)}$ is continuous on $\left[ \text{a,b} \right]$, $\text{m}$ is the least and $\text{M}$ is the greatest value of $\text{f(x)}$ on $\left[ \text{a,b} \right]$, then

$\text{m}\left( \text{b}-\text{a} \right)\le \int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}}\le \text{M(b}-\text{a)}$ 

Xll. For any two functions $\text{f(x)}$ and $\text{g(x)}$, integral on the interval $\left[ \text{a,b} \right]$, the Schwarz- Bunyakovsky inequality holds

$\left| \int\limits_{\text{a}}^{\text{b}}{\text{f(x)}\text{.g(x)dx}} \right|\le \sqrt{\int\limits_{\text{a}}^{\text{b}}{{{\text{f}}^{\text{2}}}\text{(x)dx}\text{.}\int\limits_{\text{a}}^{\text{b}}{{{\text{g}}^{\text{2}}}\text{(x)dx}}}}$ 

Xlll. If a function $\text{f(x)}$ is continuous on the interval $\left[ \text{a,b} \right]$, then there exists a point $\text{c}\in \left( \text{a,b} \right)$ such that

\[\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}=\text{f(c)(b}-\text{a)}}\], where $\text{a}<\text{c}<\text{b}$.


3. Differentiation Under Integral Sign:

Newton Leibnitz’s Theorem:

Given that $\text{x}$ has two differentiable functions, $\text{g(x)}$ and $\text{h(x)}$, where $\text{x}\in \left[ \text{a,b} \right]$ and $\text{f}$ is continuous in that interval, then  

$\dfrac{\text{d}}{\text{dx}}\left[ \int\limits_{\text{g(x)}}^{\text{h(x)}}{\text{f(t)dt}} \right]=\dfrac{\text{d}}{\text{dx}}\left[ \text{h(x)} \right]\text{.f}\left[ \text{h(x)} \right]-\dfrac{\text{d}}{\text{dx}}\left[ \text{g(x)} \right]\text{.f}\left[ \text{g(x)} \right]$ 


4. Definite Integral as a Limit of Sum:

Let $\text{f(x)}$ be a continuous real valued function defined on the closed interval $\left[ \text{a,b} \right]$ which is divided into $\text{n}$ parts as shown in figure.


Definite Integral as a Limit of Sum

The point of division on $\text{x-}$axis are

$\text{a,a}+\text{h,a}+\text{2h}.....\text{a}+\left( \text{n}-\text{1} \right)\text{h,a}+\text{nh,}$ where $\dfrac{\text{b}-\text{a}}{\text{n}}=\text{h}$.

Let ${{\text{S}}_{\text{n}}}$ denotes the area of these $\text{n}$ rectangles.

Then, ${{\text{S}}_{\text{n}}}=\text{hf(a)}+\text{hf}\left( \text{a}+\text{h} \right)+\text{hf}\left( \text{a}+\text{2h} \right)+....+\text{hf}\left( \text{a}+\left( \text{n}-\text{1} \right)\text{h} \right)$ 

Clearly, ${{\text{S}}_{\text{n}}}$ is area very close to the area of the region bounded by

Curve $\text{y}=\text{f(x),}$ $\text{x-}$axis and the ordinates $\text{x}=\text{a}$, $\text{x}=\text{b}$.

Hence \[\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}=\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,}{{\text{S}}_{\text{n}}}\] 

\[\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}=\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,}\sum\limits_{\text{r}=\text{0}}^{\text{n-1}}{\text{hf(a+rh)}}\] 

\[=\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\sum\limits_{\text{r}=\text{0}}^{\text{n-1}}{\left( \dfrac{\text{b}-\text{a}}{\text{n}} \right)}\text{f}\left( \text{a}+\dfrac{\left( \text{b}-\text{a} \right)\text{r}}{\text{n}} \right)\] 

Note:

(a) We can also write

${{\text{S}}_{\text{n}}}=\text{hf}\left( \text{a}+\text{h} \right)+\text{hf}\left( \text{a}+\text{2h} \right)+.....+\text{hf}\left( \text{a}+\text{nh} \right)$ 

\[\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}}=\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\sum\limits_{\text{r}=1}^{\text{n}}{\left( \dfrac{\text{b}-\text{a}}{\text{n}} \right)}\text{f}\left( \text{a}+\left( \dfrac{\text{b}-\text{a}}{\text{n}} \right)\text{r} \right)\] 

(b) If \[\text{a}=0,\,\text{b}=1,\,\int\limits_{0}^{1}{\text{f(x)dx}}=\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\sum\limits_{\text{r}=0}^{\text{n}-1}{\dfrac{1}{\text{n}}\text{f}\left( \dfrac{\text{r}}{\text{n}} \right)}\] 


Steps to Express the Limit of Sum as Definite Integral

Step 1. Replace  \[\dfrac{\text{r}}{\text{n}}\] by $\text{x}$, $\dfrac{\text{1}}{\text{n}}$ by $\text{dx}$ and $\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\sum{\text{by}\,}\int{{}}$  

Step 2. Evaluate $\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\left( \dfrac{\text{r}}{\text{n}} \right)$ by putting least and greatest values of $\text{r}$ as lower and upper limits respectively.

For example $\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\sum\limits_{\text{r}=1}^{\text{pn}}{\dfrac{1}{\text{n}}\text{f}\left( \dfrac{\text{r}}{\text{n}} \right)}=\int\limits_{0}{\text{f(x)dx}}$ 

$\left[ \underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\,\left( \dfrac{\text{r}}{\text{n}} \right)\left| _{\text{r}=1}=0,\,\underset{\text{n}\to \infty }{\mathop{\text{Lt}}}\, \right.\left( \dfrac{\text{r}}{\text{n}} \right)\left| _{\text{r}=\text{np}}=\text{p} \right. \right]$ 


5. Reduction Formulae in Definite Integrals

l. If ${{\text{I}}_{\text{n}}}\text{=}\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}}}\text{xdx}}$, then show that ${{\text{I}}_{\text{n}}}\text{=}\left( \dfrac{\text{n}-\text{1}}{\text{n}} \right){{\text{I}}_{\text{n}-\text{2}}}$ 

Proof: ${{\text{I}}_{\text{n}}}\text{=}\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}}}\text{xdx}}$ 

${{\text{I}}_{\text{n}}}\text{=}\left[ -\text{si}{{\text{n}}^{\text{n}-\text{1}}}\text{xcosx} \right]_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}\text{+}\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\left( \text{n}-\text{1} \right)\text{si}{{\text{n}}^{\text{n}-\text{2}}}\text{x}\text{.co}{{\text{s}}^{\text{2}}}\text{xdx}}$ 

$\text{=}\left( \text{n}-\text{1} \right)\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}-\text{2}}}\text{x}\text{.}\left( \text{1}-\text{si}{{\text{n}}^{\text{2}}}\text{x} \right)\text{dx}}$ 

$\text{=}\left( \text{n}-\text{1} \right)\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}-\text{2}}}\text{xdx}-\left( \text{n}-1 \right)\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}}}\text{x}}\text{dx}}$ 

${{\text{I}}_{\text{n}}}+\left( \text{n}-\text{1} \right){{\text{I}}_{\text{n}}}=\left( \text{n}-\text{1} \right){{\text{I}}_{\text{n}-\text{2}}}$ 

${{\text{I}}_{\text{n}}}=\left( \dfrac{\text{n}-\text{1}}{\text{n}} \right){{\text{I}}_{\text{n}-\text{2}}}$ 

Note:

(a) $\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{n}}}\text{xdx}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{co}{{\text{s}}^{\text{n}}}\text{xdx}}}$ 

(b) ${{\text{I}}_{\text{n}}}=\left( \dfrac{\text{n}-\text{1}}{\text{n}} \right)\left( \dfrac{\text{n}-\text{3}}{\text{n}-\text{2}} \right)\left( \dfrac{\text{n}-\text{5}}{\text{n}-\text{4}} \right)....{{\text{I}}_{\text{0}}}\,\text{or}\,{{\text{I}}_{\text{1}}}$ according as \[\text{n}\] is even or odd, ${{\text{I}}_{\text{0}}}=\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{,}\,{{\text{I}}_{\text{1}}}=\text{1}$ 

Hence ${{\text{I}}_{\text{n}}}=\left\{ \begin{matrix} \left( \dfrac{\text{n}-\text{1}}{\text{n}} \right)\left( \dfrac{\text{n}-\text{3}}{\text{n}-\text{2}} \right)\left( \dfrac{\text{n}-\text{5}}{\text{n}-\text{4}} \right).....\left( \dfrac{\text{1}}{\text{2}} \right)\text{.}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\,\,\text{if}\,\,\text{n}\,\,\text{is}\,\,\text{even}  \\ \left( \dfrac{\text{n}-\text{1}}{\text{n}} \right)\left( \dfrac{\text{n}-\text{3}}{\text{n}-\text{2}} \right)\left( \dfrac{\text{n}-\text{5}}{\text{n}-\text{4}} \right).....\left( \dfrac{\text{2}}{\text{3}} \right)\text{.1}\,\,\text{if}\,\,\text{n}\,\,\text{is }\,\text{odd}  \\ \end{matrix} \right\}$ 

ll. If ${{\text{I}}_{\text{n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{ta}{{\text{n}}^{\text{n}}}\text{xdx}}$, then show that ${{\text{I}}_{\text{n}}}+{{\text{I}}_{\text{n}-\text{2}}}=\dfrac{\text{1}}{\text{n}-\text{1}}$ 

Proof: ${{\text{I}}_{\text{n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{{{\left( \text{tanx} \right)}^{\text{n}-\text{2}}}\text{.ta}{{\text{n}}^{\text{2}}}\text{xdx}}$ 

$=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{{{\left( \text{tanx} \right)}^{\text{n}-\text{2}}}\left( \text{se}{{\text{c}}^{\text{2}}}\text{x}-\text{1} \right)\text{dx}}$ 

$\text{=}\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{{{\left( \text{tanx} \right)}^{\text{n}-\text{2}}}\text{se}{{\text{c}}^{\text{2}}}\text{xdx}}-\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{{{\left( \text{tanx} \right)}^{\text{n}-\text{2}}}\text{dx}}$ 

$=\left[ \dfrac{{{\left( \text{tanx} \right)}^{\text{n}-\text{1}}}}{\text{n}-\text{1}} \right]_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}-{{\text{I}}_{\text{n}-\text{2}}}$ 

${{\text{I}}_{\text{n}}}=\dfrac{\text{1}}{\text{n}-\text{1}}-{{\text{I}}_{\text{n}-\text{2}}}$ 

${{\text{I}}_{\text{n}}}+{{\text{I}}_{\text{n}-\text{2}}}=\dfrac{\text{1}}{\text{n}-\text{1}}$ 

lll. If ${{\text{I}}_{\text{m,n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{m}}}\text{x}\text{.co}{{\text{s}}^{\text{n}}}\text{xdx}}$, then show that ${{\text{I}}_{\text{m,n}}}=\dfrac{\text{m}-\text{1}}{\text{m}+\text{n}}{{\text{I}}_{\text{m}-\text{2}}}\text{,n}$ 

Proof: ${{\text{I}}_{\text{m,n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{m}-1}}\text{x}\left( \text{sinxco}{{\text{s}}^{\text{n}}}\text{x} \right)\text{dx}}$ 

$=\left[ -\dfrac{\text{si}{{\text{n}}^{\text{m}-\text{1}}}\text{x}\text{.co}{{\text{s}}^{\text{n}+\text{1}}}\text{x}}{\text{n}+\text{1}} \right]_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}+\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\dfrac{\text{co}{{\text{s}}^{\text{n}+\text{1}}}}{\text{n}+\text{1}}\left( \text{m}-\text{1} \right)\text{si}{{\text{n}}^{\text{m}-\text{2}}}\text{xcosxdx}}$ 

$=\left( \dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right)\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{si}{{\text{n}}^{\text{m}-\text{2}}}\text{x}\text{.co}{{\text{s}}^{\text{n}}}\text{x}\text{.co}{{\text{s}}^{\text{2}}}\text{xdx}}$ 

$=\left( \dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right)\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\left( \text{si}{{\text{n}}^{\text{m}-\text{2}}}\text{x}\text{.co}{{\text{s}}^{\text{n}}}\text{x}-\text{si}{{\text{n}}^{\text{m}}}\text{x}\text{.co}{{\text{s}}^{\text{n}}}\text{x} \right)\text{dx}}$ 

$=\left( \dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right){{\text{I}}_{\text{m}-\text{2,n}}}-\left( \dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right){{\text{I}}_{\text{m,n}}}$ 

$\Rightarrow \left( \text{1}+\dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right){{\text{I}}_{\text{m,n}}}=\left( \dfrac{\text{m}-\text{1}}{\text{n}+\text{1}} \right){{\text{I}}_{\text{m}-\text{2,n}}}$ 

${{\text{I}}_{\text{m,n}}}\text{=}\left( \dfrac{\text{m}-\text{1}}{\text{m}+\text{n}} \right){{\text{I}}_{\text{m}-\text{2,n}}}$ 

Note:

(a) ${{\text{I}}_{\text{m,n}}}=\left( \dfrac{\text{m}-\text{1}}{\text{m}+\text{n}} \right)\left( \dfrac{\text{m}-\text{3}}{\text{m}+\text{n}-\text{2}} \right)\left( \dfrac{\text{m}-\text{5}}{\text{m}+\text{n}-\text{4}} \right).....{{\text{I}}_{\text{0,n}}}\,\text{or}\,{{\text{I}}_{\text{1,n}}}$ according as $\text{m}$ is even or odd.

${{\text{I}}_{\text{0,n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{co}{{\text{s}}^{\text{n}}}\text{xdx}\,\text{and}\,{{\text{I}}_{\text{1,n}}}=\int\limits_{\text{0}}^{\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}}{\text{sinx}\text{.co}{{\text{s}}^{\text{n}}}\text{xdx}=\dfrac{\text{1}}{\text{n+1}}}}$ 

(b) Walli’s Formula

\[{{\text{I}}_{\text{m,n}}}=\left\{ \begin{matrix} \dfrac{\left( \text{m}-\text{1} \right)\left( \text{m}-\text{3} \right)\left( \text{m}-\text{5} \right)....\left( \text{n}-\text{1} \right)\left( \text{n}-\text{3} \right)\left( \text{n}-\text{5} \right)....}{\left( \text{m}+\text{n} \right)\left( \text{m}+\text{n}-\text{2} \right)\left( \text{m}+\text{n}-\text{4} \right).....}\,\,\,\text{when}\,\,\text{both}\,\,\text{m,n}\,\,\text{are}\,\,\text{even}  \\ \dfrac{\left( \text{m}-\text{1} \right)\left( \text{m}-\text{3} \right)\left( \text{m}-\text{5} \right)....\left( \text{n}-\text{1} \right)\left( \text{n}-\text{3} \right)\left( \text{n}-\text{5} \right).....}{\left( \text{m}+\text{n} \right)\left( \text{m}+\text{n}-\text{2} \right)\left( \text{m}+\text{n}-\text{4} \right)....}\,\,\text{otherwise}  \\ \end{matrix} \right\}\] 


Area Under the Curves

(a) Area of Plane Regions:

l. The area bounded by the curve $\text{y}=\text{f(x)}$, $\text{x-}$axis and the ordinates $\text{x}=\text{a}$ and \[\text{x}=\text{b}\] (where $\text{ba}$) is given by

$\text{A}=\int\limits_{\text{a}}^{\text{b}}{\left| \text{y} \right|\text{dx}=\int\limits_{\text{a}}^{\text{b}}{\left| \text{f(x)} \right|\text{dx}}}$ 

(i) If $\text{f(x)}>0\forall \text{x}\in \left[ \text{a,b} \right]$ 

Then $\text{A}=\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}}$ 


Area of plane regions

(ii) If $\text{f(x)}>0\forall x\in \left[ \text{a,c} \right)\,\text{ }\!\!\And\!\!\text{ }\,<0\forall \text{x}\in \left( \text{c,b} \right]$ 

Then $\text{A}=\left| \int\limits_{\text{a}}^{\text{c}}{\text{ydx}} \right|+\left| \int\limits_{\text{c}}^{\text{b}}{\text{ydx}} \right|=\int\limits_{\text{a}}^{\text{c}}{\text{f(x)dx}-\int\limits_{\text{c}}^{\text{b}}{\text{f(x)dx}}}$ where $\text{c}$ is a point in between $\text{a}$ and $\text{b}$.


Area between x=a and x=b

ll. The area bounded by the curve $\text{x}=\text{g(y)}$, $\text{y-}$axis and the abscissae $\text{y}=\text{c}$ and $\text{y}=\text{d}$ (where $\text{dc}$) is given by

$\text{A}=\int\limits_{\text{c}}^{\text{d}}{\left| \text{x} \right|\text{dy}=\int\limits_{\text{c}}^{\text{d}}{\left| \text{g(y)} \right|\text{dy}}}$ 


Area of the curve x = g(y)

III. If we have two curve $\text{y}=\text{f(x)}$ and $\text{y}=\text{g(x)}$, such that $\text{y}=\text{f(x)}$ lies above the curve $\text{y}=\text{g(x)}$ then the area bounded between them and the ordinates $\text{x}=\text{a}$ and $\text{x}=\text{b}$ $\left( \text{b}>\text{a} \right)$, is given by

$\text{A}=\int\limits_{\text{a}}^{\text{b}}{\text{f(x)dx}-\int\limits_{\text{a}}^{\text{b}}{\text{g(x)dx}}}$ 

i.e. $\text{upper}\,\text{curve}\,\text{area}-\text{lower}\,\text{curve}\,\text{area}$.


Area of two curves y=f(x) and y=g(x) with x=a and x=b

lV. The area bounded by the curves $\text{y}=\text{f(x)}$ and $\text{y}=\text{g(x)}$ between the ordinates $\text{x}=\text{a}$ and $\text{x}=\text{b}$ is given by

$\text{A}=\int\limits_{\text{a}}^{\text{c}}{\text{f(x)dx}+\int\limits_{\text{c}}^{\text{b}}{\text{g(x)dx}}}$, where $\text{x}=\text{c}$ is the point of intersection of the two curves.


Area of two curves y=f(x) and y=g(x) with x=a

V. Curve Tracing

It is necessary to have a rough sketch of the desired piece in order to locate the area enclosed by many curves. The following steps are very useful in tracing a cartesian curve $\text{f(x,y)}=\text{0}$.


Step 1: Symmetry

(i) If all the powers of $\text{y}$ in the equation of the given curve are even then the curve is symmetrical about $\text{x-}$axis.

(ii) If all the powers of $\text{x}$ in the equation of the given curve are even then the curve is symmetrical about $\text{y-}$axis.

(iii) If the equation of the given curve remains unchanged on interchanging $\text{x}$ and $\text{y}$, then the curve is symmetrical about the line\[\text{y}=\text{x}\].

(iv) If the equation of the given curve remains unchanged when $\text{x}$  and $\text{y}$ are replaced by $-\text{x}$  and $-\text{y}$ respectively, then the curve is symmetrical in opposite quadrants.


Step 2: Origin

If the algebraic curve's equation contains no constant term, the curve passes through the origin.

The tangents at the origin are then calculated by equating the lowest degree terms in the equation of the specified algebraic curve to zero.

For example, the curve ${{\text{y}}^{\text{3}}}={{\text{x}}^{\text{3}}}+\text{axy}$ passes through the origin and the tangents at the origin are given by $\text{axy}=0$ i.e. $\text{x}=\text{0}$ and $\text{y}=0$.


Step 3: Intersection with the Co-ordinates Axes

(i) Find out the corresponding values of $\text{x}$ by putting \[\text{y}=\text{0}\] in the equation of the given curve, to estimate the points of intersection of the curve with $\text{x-}$axis

(ii) Find out the corresponding values of $\text{y}$ by putting \[\text{x}=\text{0}\] in the equation of the given curve, to estimate the points of intersection of the curve with $\text{y-}$axis


Step 4: Asymptotes

Find out the asymptotes of the curve.

(i) The vertical asymptotes of the given algebraic curve, or asymptotes parallel to the $\text{y-}$axis, are derived by equating the coefficient of the highest power of $\text{y}$ in the equation of the supplied curve to zero.

(ii) The horizontal asymptotes of the given algebraic curve, or asymptotes parallel to the $\text{x-}$axis, are derived by equating the coefficient of the highest power of $\text{x}$ in the equation of the supplied curve to zero.


Step 5: Region

Find out the regions of the plane in which no part of the curve lies. To determine such regions we solve the given equation for $\text{y}$ in terms of $\text{x}$ or vice-versa. Suppose that y becomes imaginary for\[\text{x}>\text{a}\], the curve does not lie in the region\[\text{x}>\text{a}\].


Step 6: Critical Points

Find out the values of $\text{x}$ at which $\dfrac{\text{dy}}{\text{dx}}=0$ 

At such points $\text{y}$ generally changes its character from an increasing function of $\text{x}$to a decreasing function of $\text{x}$ or vice-versa.


Step 7: 

Trace the curve with the help of the above points.


Important Formulas of Class 12 Chapter 8 You Shouldn’t Miss! 

1. Area Under a Curve:

To find the area between the curve $y = f(x)$ and the x-axis from $x = a$ to $x = b$:

\[\text{Area} = \int_{a}^{b} f(x) \, dx\]


2. Area Between Two Curves:

To find the area between two curves $y = f(x)$ and $y = g(x)$ from $x = a$ to $x = b$:

\[\text{Area}=\mathop{\int }_{a}^{b}[f(x)-g(x)]\,dx\]


3. Volume of a Solid of Revolution:

a. When rotating a curve $y = f(x)$ around the x-axis from $x = a$ to $x = b$:

\[\text{Volume}=\pi \mathop{\int }_{a}^{b}{{[f(x)]}^{2}}\,dx\]


b. When rotating a curve $x = g(y)$ around the y-axis from $y = c$ to $y = d$:

\[\text{Volume}=\pi \mathop{\int }_{c}^{d}{{[g(y)]}^{2}}\,dy\]


4. Length of a Curve:

a. For a curve given by $y = f(x)$ from $x = a$ to $x = b$:

\[\text{Length} = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx\]


b. For a curve given by $x = g(y)$ from $y = c$ to $y = d$:

\[\text{Length} = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy\]


5. Surface Area of a Solid of Revolution:

a. When rotating a curve y = f(x) around the x-axis from x = a to x = b:

\[\text{Surface }\!\!~\!\!\text{ Area}=2\pi \mathop{\int }_{a}^{b}f(x)\sqrt{1+{{\left( \frac{dy}{dx} \right)}^{2}}}dx\]


b. When rotating a curve x=g(y)x = g(y)x=g(y) around the y-axis from y = c to y = d:

\[\text{Surface }\!\!~\!\!\text{ Area}=2\pi \mathop{\int }_{c}^{d}g(y)\sqrt{1+{{\left( \frac{dx}{dy} \right)}^{2}}}dy\]


Importance of Application of Integrals Class 12 Notes

  1. Exam Preparation: The notes highlight important formulas, properties, and problem-solving techniques that are frequently tested in board exams, ensuring students are well-prepared and confident.

  2. Foundation for Advanced Topics: The principles learned in this chapter lay the groundwork for more advanced calculus topics and applications in higher studies, including engineering and physics.

  3. Quick Revision: The notes provide a concise summary of key concepts, making them an ideal tool for quick revision before exams. This helps in reinforcing learning and recalling important points during the exam.

  4. Problem-Solving Skills: By working through examples and exercises included in the notes, students can enhance their analytical and problem-solving skills, which are crucial for tackling complex questions in exams.

  5. Conceptual Understanding: Detailed notes provide clear explanations and practical examples, aiding in a deeper understanding of how integrals are applied, which helps in grasping the nuances of the subject.


Tips for Learning the Class 12 Maths Chapter 8 Application of Integrals

Understand the Concepts:

  • Begin by thoroughly understanding the basic concepts of integrals. Familiarize yourself with how integrals are used to calculate areas, volumes, and lengths.


Study Key Formulas:

  • Memorise and understand the key formulas for calculating areas under curves, volumes of solids of revolution, and lengths of curves. Knowing these formulas will be crucial for solving problems.


Practice Problem-Solving:

  • Work on a variety of problems to apply the concepts. Solve exercises that involve different methods, such as the disk method and shell method, to build proficiency.


Visualise Graphs:

  • Use graphs to visualize problems involving areas between curves and volumes of revolution. This will help in understanding the application of integrals in a geometric context.


Use Step-by-Step Solutions:

  • Study solved examples and work through the steps to understand how problems are approached and solved. Pay attention to the methods and reasoning used.


Conclusion

Mastering the formulas for Class 12 Chapter 8: Application of Integrals is vital for solving complex problems related to areas, volumes, and curve lengths. These formulas provide the foundation for applying integrals to real-world scenarios, helping you excel in exams and develop a deeper understanding of calculus. By thoroughly studying and practising these formulas, you will enhance your problem-solving skills and be well-prepared for both theoretical and practical applications of integrals. Ensure you are familiar with each formula and its application for your exams in this important chapter.


Related Study Materials for Class 12 Maths Chapter 8

Students can also download additional study materials provided by Vedantu for Class 12 Maths Chapter 8 Application of Integrals:




Chapter-wise Revision Notes Links for Class 12 Maths



Important Study Materials for Class 12 Maths

WhatsApp Banner

FAQs on Application of Integrals Class 12 Notes: CBSE Maths Chapter 8

1. What are the main concepts covered in the Application of Integrals Class 12 Revision Notes?

Application of Integrals Class 12 Revision Notes summarize essential concepts such as calculating the area under curves, areas between curves, volume of solids of revolution, and length of curves. The notes also outline theorems and formulas needed to apply integrals in different problem scenarios as per the CBSE 2025–26 syllabus.

2. How can I use the revision notes to quickly revise Class 12 Maths Chapter 8 before exams?

To revise efficiently, start by reviewing the key formulas and concepts highlighted in the notes. Focus on summary sections and solved examples to reinforce understanding of crucial steps. Practise concept maps or flowcharts if provided, as these help visualize relationships between ideas for rapid last-minute revision.

3. What is the quickest way to recall the most important formulas from Application of Integrals for Class 12 exams?

Use these strategies for quick recall:

  • Write a formula sheet using your revision notes.
  • Group formulas by application: area under curves, area between curves, volumes, and curve lengths.
  • Practise one or two representative problems for each formula type from your notes.
  • Recite formulas and their use-cases aloud or create mnemonic devices for complex ones.

4. How do the revision notes help connect Application of Integrals to other topics in Class 12 Maths?

Revision notes often show how the application of integrals builds upon earlier topics like functions, differentiation, and basic integration. They may also link to related chapters such as differential equations and area/volume problems in coordinate geometry, providing a holistic understanding and aiding integrated revision.

5. What is a concept map, and how can it help in revising the Application of Integrals chapter?

A concept map is a visual summary that organizes key ideas, formulas, and their interconnections. In Application of Integrals, a concept map can outline when to use area under a curve versus area between curves or indicate conditions for applying each formula. Using such maps from revision notes helps in structuring your study and quickly revising relationships between topics.

6. Why is it important to focus on properties and theorems in Application of Integrals during revision?

Theorems and properties provide shortcuts and logical rules that simplify complex problems, such as symmetry, periodicity, and definite integral properties. Understanding these not only reduces calculation errors but also enables you to tackle unfamiliar questions in exams confidently, as required by the CBSE Class 12 syllabus.

7. How should key terms and definitions be revised for Application of Integrals in Class 12?

Highlight key terms like definite integral, curve tracing, area between curves, limits of integration, and their definitions in your revision notes. Make short notes or flashcards for these terms and quiz yourself to ensure clarity, focusing on their mathematical meaning and how they appear in exam questions.

8. What are effective revision tips for mastering Application of Integrals, according to the notes?

  • Start with basic definitions and properties before moving to solved examples.
  • Attempt different types of questions, including HOTS and past exam problems, using only the formulas and steps provided in your revision notes.
  • Regularly summarize what you have revised in your own words to test understanding.
  • Use graphs and diagrams alongside algebraic solutions for better concept retention.

9. How do the Revision Notes help clarify common misconceptions in Application of Integrals?

Revision Notes for Application of Integrals often highlight common errors, such as mixing up the order of upper and lower limits, applying the wrong area formula, or misusing properties for even and odd functions. By emphasizing these areas, the notes guide you to focus on crucial differentiators that prevent mistakes and strengthen conceptual understanding.

10. What type of questions should students expect in the exam after revising from Application of Integrals revision notes?

After revising with the Class 12 Application of Integrals notes, students can expect questions involving:

  • Calculation of area under standard curves
  • Finding area between two intersecting curves
  • Application of properties of definite integrals
  • Problem-solving using key theorems from the notes
  • Short conceptual and HOTS questions based on symmetry, periodicity, and error identification as outlined for the CBSE 2025–26 board exam