Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 10 Maths Chapter 13 Statistics Ex 13.2

ffImage
banner

NCERT Solutions for Maths Class 10 Chapter 13 Statistics Exercise 13.2 - FREE PDF Download

The NCERT Solutions for Class 10 Maths Chapter 13 Exercise 13.2 - Statistics by Vedantu provides complete solutions that help students understand statistical concepts. This exercise focuses on determining the mean, median, and mode of grouped data, which are important tools in data analysis. The step-by-step instructions help students follow and understand the steps.

toc-symbolTable of Content
toggle-arrow


Focusing on NCERT Solutions for Class 10 Maths answers is important because they give a strong statistical foundation, allowing students to handle a variety of data challenges. Students can improve their analytical skills by practising regularly, which is necessary for both examinations and practical uses. Practising these solutions could help students improve their understanding and solve problems in the CBSE Class 10 Maths Syllabus.


Glance on NCERT Solutions Maths Chapter 13 Exercise 13.2 Class 10 | Vedantu

  • Class 10 Chapter 13 Statistics Exercise 13.2 explains the mode of grouped data and how to determine it.

  • The mode of grouped data is the value that appears most frequently within a given data set.

  • Problems involve working with frequency distribution tables to find the mode, it requires understanding class intervals and frequencies to accurately identify the mode.

  • The exercise helps compare the mode with other measures of central tendency like mean and median.

  • It includes various practice problems to strengthen problem-solving skills related to grouped data.

  • There are 6 fully solved questions in NCERT Solutions for Class 10 Maths Chapter 13 Exercise 13.2 Statistics.


Formulas Used in Class 10 Chapter 13 Exercise 13.2

  • Mode of Grouped Data: $L+\left ( \frac{f_{1}-f_{0}}{2f_{1}-f_{0}-f_{2}} \right )\times h$

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions for Class 10 Maths Chapter 13 Statistics Ex 13.2
Previous
Next
Vedantu 9&10
Subscribe
iconShare
Statistics L-2 | Median & Mode of Grouped Data | CBSE Class 10 Maths Chapter 14 | Term 2 Solutions
5.7K likes
133.7K Views
3 years ago
Vedantu 9&10
Subscribe
iconShare
Statistics L-1 | Introduction & Mean of Grouped data | CBSE Class 10 Maths Chap14 | Term 2 Solutions
14.2K likes
202.5K Views
3 years ago

Access NCERT Solutions for Maths Class 10 Chapter 13 - Statistics

Exercise 13.2

1. The following table shows the ages of the patients admitted in a hospital during a year:


Age

(in years)

\[5-15\] 

\[15-25\]  

\[25-35\] 

\[35-45\] 

\[45-55\] 

\[55-65\]

Number of patients

\[6\]  

\[11\] 

\[21\] 

\[23\]  

\[14\] 

\[5\]



Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.

Ans: The mean can be found as given below:

$\overline{X}=a+\left( \frac{\sum{{{f}_{i}}{{u}_{i}}}}{\sum{{{f}_{i}}}} \right)$

Suppose the assured mean $\left( a \right)$ of the data is \[30\].

Class mark \[\left( {{x}_{i}} \right)\] for each interval is calculated as follows:

\[{{x}_{i}}=\frac{\text{Upper class limit+Lower class limit}}{2}\]

\[{{d}_{i}},\]\[{{u}_{i}},\]and \[{{f}_{i}}{{u}_{i}}\] can be evaluated as follows:


Age (in years)

Number of

Patients
\[{{f}_{i}}\] 

  Class Mark
\[{{x}_{i}}\]

${{d}_{i}}={{x}_{i}}-30$ 

\[{{f}_{i}}{{d}_{i}}\]

\[5-15\] 

\[6\] 

\[10\] 

\[-20\] 

\[-120\] 

\[15-25\] 

\[11\]  

\[20\]  

\[-10\] 

\[-110\] 

\[25-35\]

\[21\] 

\[30\] 

\[0~\] 

\[0~\]

\[35-45\]

\[23\]

\[40\] 

\[10~\] 

\[230\]

\[45-55\]  

\[14\] 

\[50\] 

\[20\] 

\[280\]

\[55-65\]

\[5\]

\[60\]

\[30\]

\[150\]

Total 

\[80\]



\[430\]



It can be observed that from the above table

\[\sum{{{f}_{i}}=80}\] 

$\sum{{{f}_{i}}{{d}_{i}}}=430$ 

Substituting the value of \[{{u}_{i}},\] and \[{{f}_{i}}{{u}_{i}}\] in the formula of mean we get:

The required mean:

$  \overline{X}=a+\left( \frac{\sum{{{f}_{i}}{{u}_{i}}}}{\sum{{{f}_{i}}}} \right) $ 

$  \overline{X}=30+\left( \frac{430}{80} \right) $

$  \overline{X}=30+5.375 $

$  \overline{X}=35.38 $

Hence, the mean of this data is $35.38$. It demonstrates that the average age of a patient admitted to hospital was $35.38$years.

Mode can be calculated as,

$M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h$

Where

\[l=\] Lower limit of modal class

${{\text{f}}_{1}}=$ Frequency of modal class

\[{{f}_{0}}=\] Frequency of class preceding the modal class

\[{{f}_{2}}=\] Frequency of class succeeding the modal class

\[h=\]Class size

It can be noticed that the maximum class frequency is \[23\]  belonging to class interval\[35\text{ }-\text{ }45\] .

Modal class \[=35\text{ }-\text{ }45\]

The values of unknowns is given as below as per given data:

\[l=\text{ }35\] 

\[{{f}_{1}}=\text{ }23\] 

\[h=15-5=10\] 

\[{{f}_{0}}=\text{ }21\] 

\[{{f}_{2}}=\text{ }14\] 

Substituting these values in the formula of mode we get:

$   M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h $

$  M=35+\left( \frac{23-21}{2(23)-21-14} \right)\times 10 $

$  M=35+\left[ \frac{2}{46-35} \right]\times 10 $

$  M=35+\frac{20}{11} $

$   \text{M=35+1}\text{.81} $

$  \text{M=36}\text{.8} $

Hence, the Mode of the data is $36.8$. It demonstrates that the age of maximum number of patients admitted in hospital was $36.8$years.


2. The following data gives the information on the observed lifetimes (in hours) of \[\mathbf{225}\] electrical components:


LifeTimes

(in hours)

\[0-20\] 

\[20-40\]  

\[40-60\] 

\[60-80\] 

\[80-100\] 

\[100-120\]

Frequency

\[10\]  

\[35\] 

\[52\] 

\[61\]  

\[38\] 

\[29\]



Determine the modal lifetimes of the components.

Ans: Mode can be calculated as,

$M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h$

Where

\[l=\] Lower limit of modal class

${{\text{f}}_{1}}=$ Frequency of modal class

\[{{f}_{0}}=\] Frequency of class preceding the modal class

\[{{f}_{2}}=\] Frequency of class succeeding the modal class

\[h=\]Class size

From the data given above, it can be noticed that the maximum class

frequency is\[61\] belongs to class interval \[60\text{ }-\text{ }80\].

Therefore, Modal class \[=60-80\] 

The values of unknowns are given as below as per given data:

\[l=\text{60}\] 

\[{{f}_{1}}=61\] 

\[h=20\] 

\[{{f}_{0}}=52\] 

\[{{f}_{2}}=38\] 

Substituting these values in the formula of mode we get:

$   M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h $

$  M=60+\left( \frac{61-52}{2(61)-52-38} \right)\times 20 $

$  M=60+\left[ \frac{9}{122-90} \right]\times 20 $

$  M=360+\left( \frac{9\times 20}{32} \right) $

 $  M=60+\frac{90}{16}=60+5.625 $

$  M=65.625 $

Hence, the modal lifetime of electrical components is \[65.625\] hours.


3. The following data gives the distribution of total monthly household expenditure of  \[\mathbf{200}\]  families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure.


Expenditure (in Rs)

Number of Families

\[1000-1500\]

\[24\]

\[1500-2000\]

\[40\]

\[2000-2500\]

\[33\]

\[2500-3000\]

\[28\]

\[3000-3500\]

\[30\]

$3500-4000$ 

\[22\]

$4000-4500$

\[16\]

$4500-5000$

\[7\]



Ans: For mode

Mode can be calculated as,

$M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h$

Where

\[l=\] Lower limit of modal class

${{\text{f}}_{1}}=$ Frequency of modal class

\[{{f}_{0}}=\] Frequency of class preceding the modal class

\[{{f}_{2}}=\] Frequency of class succeeding the modal class

\[h=\]Class size

It can be observed from the given data that the maximum class frequency is\[40\] ,

Belongs to \[1500\text{ }-\text{ }2000\] intervals.

Therefore, modal class \[=\text{ }1500\text{ }-\text{ }2000\] 

The values of unknowns are given as below as per given data:

\[l=1500\] 

\[{{f}_{1}}=40\] 

\[{{f}_{0}}=24\] 

\[{{f}_{2}}=33\] 

\[h=500\] 

Substituting these values in the formula of mode we get:

$   M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h $

$  M=1500+\left( \frac{40-24}{2(40)-24-33} \right)\times 500 $

$  M=1500+\left[ \frac{16}{80-57} \right]\times 500 $

$  M=1500+\frac{8000}{23} $

$M=1500+347.826$

$ M=1847.826 $

$  M\approx 1847.83 $

Therefore, modal monthly expenditure was Rs \[1847.83\] .

For mean,

The mean can be found as given below:

$\overline{X}=a+\left( \frac{\sum{{{f}_{i}}{{u}_{i}}}}{\sum{{{f}_{i}}}} \right)h$

Suppose the assured mean $\left( a \right)$ of the data is \[2750\].

Class mark \[\left( {{x}_{i}} \right)\] for each interval is calculated as follows:

\[\text{Class mark}=\frac{\text{Upper class limit+Lower class limit}}{2}\] 

Class size (\[h\]) of this data is:

$   h=1500-1000 $

$ h=500 $

\[{{d}_{i}},\]\[{{u}_{i}},\]and \[{{f}_{i}}{{u}_{i}}\] can be evaluated as follows:


Expenditure (in Rs)

Number of families 

\[{{f}_{i}}\] 


  \[{{x}_{i}}\]

${{d}_{i}}={{x}_{i}}-2750$ 

${{u}_{i}}=\frac{{{d}_{i}}}{500}$ 

\[{{f}_{i}}{{u}_{i}}\]

\[1000-1500\] 

\[24\] 

\[1250\] 

\[-1500\] 

\[-3\] 

\[-72\] 

\[1500-2000\] 

\[40\]  

\[1750\]  

\[-1000\] 

\[-2\] 

\[-80\] 

\[2000-2500\]

\[33\] 

\[2250\] 

\[-500\] 

\[-1~\] 

\[-33\]

\[2500-3000\]

\[28\]

\[2750\] 

\[0~\] 

\[0~\] 

\[0~\]

\[3000-3500\]  

\[30\] 

\[3250\] 

\[500\] 

\[1\]  

\[30\]

\[3500-4000\]

\[22\]

\[3750\]

\[1000\]

\[2\]

\[44\]

\[4000-4500\]

\[16\]

\[4250\]

\[1500\]

\[3\]

\[48\]

\[4500-5000\]

\[7\]

\[4750\]

\[2000\]

\[4\]

\[28\]

Total 

\[200\]




\[-35\]



It can be observed from the above table

\[\sum{{{f}_{i}}=200}\] 

$\sum{{{f}_{i}}{{u}_{i}}}=-35$ 

Substituting \[{{u}_{i}},\]and \[{{f}_{i}}{{u}_{i}}\] in the formula of mean 

The required mean:

$\overline{X}=a+\left( \frac{\sum{{{f}_{i}}{{u}_{i}}}}{\sum{{{f}_{i}}}} \right)\times h$ 

$\overline{X}=2750+\left( \frac{-35}{200} \right)\times (500)$ 

$\overline{X}=2750-87.5$

$\overline{X}=2662.5$

Hence, the mean monthly expenditure is Rs$2662.5$ .


4. The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two Measures.


Number of Students Per Teacher

Number of States/U.T

\[15-20\]

\[3\]

\[20-25\]

\[8\]

\[25-30\]

\[9\]

\[30-35\]

\[10\]

\[35-40\]

\[3\]

$40-45$ 

\[0\]

$45-50$

\[0\]

$50-55$

\[2\]



Ans: For mode

Mode can be calculated as,

$M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h$

Where

\[l=\] Lower limit of modal class

${{\text{f}}_{1}}=$ Frequency of modal class

\[{{f}_{0}}=\] Frequency of class preceding the modal class

\[{{f}_{2}}=\] Frequency of class succeeding the modal class

\[h=\]Class size

It can be observed from the given data that the maximum class frequency is \[10\] which belongs to class interval\[30\text{ }-\text{ }35\] . 

Therefore, modal class \[=\text{ }30\text{ }-\text{ }35\] 

\[h=5\] 

\[l=30\] 

\[{{f}_{1}}=10\] 

\[{{f}_{0}}=9\] 

\[{{f}_{2}}=3\] 

Substituting these values in the formula of mode we get:

$   M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h $

$  M=30+\left( \frac{10-9}{2(10)-9-3} \right)\times 5 $

$  M=30+\left( \frac{1}{20-12} \right)\times 5 $

$  M=30.6 $

Hence, the mode of the given data is $30.6$. It demonstrates that most of the states/U.T have a teacher-student ratio of $30.6$ .

For mean,

The mean can be found as given below:

$\overline{X}=a+\left( \frac{\sum{{{f}_{i}}{{u}_{i}}}}{\sum{{{f}_{i}}}} \right)h$

Suppose the assured mean $\left( a \right)$ of the data is \[32.5\].

Class mark \[\left( {{x}_{i}} \right)\] for each interval is calculated as follows:

\[\text{Class mark}=\frac{\text{Upper class limit+Lower class limit}}{2}\] 

Class size (\[h\]) of this data is:

  $ h=20-15 $

$ h=5 $ 

\[{{d}_{i}},\text{ }{{u}_{i}},\text{ }and\text{ }{{f}_{i}}{{u}_{i}}\] can be calculated as follows:


Number of

students per

teacher

Number of

states /U.T
\[{{f}_{i}}\] 


  \[{{x}_{i}}\]

${{D}_{i}}={{x}_{i}}-32.5$ 

${{u}_{i}}=\frac{{{d}_{i}}}{5}$ 

\[{{f}_{i}}{{u}_{i}}\]

\[15-20\] 

\[3\] 

\[17.5\] 

\[-15\] 

\[-3\] 

\[-9\] 

\[20-25\] 

\[8\]  

\[22.5\]  

\[-10\] 

\[-2\] 

\[-16\] 

\[25-30\]

\[9\] 

\[27.5\] 

\[-5\] 

\[-1~\] 

\[-9\]

\[30-35\]

\[10\]

\[32.5\] 

\[0~\] 

\[0~\] 

\[0~\]

\[35-40\]  

\[3\] 

\[37.5\] 

\[5\] 

\[1\]  

\[3\]

\[40-45\]

\[0~\]

\[42.5\]

\[10\]

\[2\]

\[0~\]

\[45-50\]

\[0~\]

\[47.5\]

\[15\]

\[3\]

\[0~\]

\[50-55\]

\[2\]

\[52.5\]

\[20\]

\[4\]

\[8\]

Total 

\[35\]




\[-23\]



It can be observed from the above table

\[\sum{{{f}_{i}}=35}\] 

$\sum{{{f}_{i}}{{u}_{i}}}=-23$ 

Substituting \[{{u}_{i}},\]and \[{{f}_{i}}{{u}_{i}}\] in the formula of mean 

The required mean

$   \overline{X}=a+\left( \frac{\sum{{{f}_{i}}{{u}_{i}}}}{\sum{{{f}_{i}}}} \right)\times h $

$  \overline{X}=32.5+\left( \frac{-23}{35} \right)\times 5 $

$  \overline{X}=32.5-\frac{23}{7} $

$  \overline{X}=29.22 $

Hence, the mean of the data is $29.2$ .

It demonstrates that the average teacher−student ratio was $29.2$.


5. The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.


Runs Scored

Number of Batsmen

\[3000-4000\]

\[4\]

\[4000-5000\]

\[18\]

\[5000-6000\]

\[9\]

\[6000-7000\]

\[7\]

\[7000-8000\]

\[6\]

$8000-9000$ 

\[3\]

$9000-10000$

\[1\]

$10000-11000$

\[1\]



Find the mode of the data.

Ans: Mode can be calculated as

$M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h$

Where

\[l=\] Lower limit of modal class

${{\text{f}}_{1}}=$ Frequency of modal class

\[{{f}_{0}}=\] Frequency of class preceding the modal class

\[{{f}_{2}}=\] Frequency of class succeeding the modal class

\[h=\]Class size

From the given data, it can be observed that the maximum class frequency is $18$ 

Belongs to class interval \[4000-5000\].

Therefore, modal class = \[4000-5000\]

\[l=4000\] 

\[{{f}_{1}}=18\] 

\[{{f}_{0}}=4\] 

\[{{f}_{2}}=9\] 

\[h=1000\] 

Substituting these values in the formula of mode we get:

$   M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h $

$  M=4000+\left( \frac{18-4}{2(18)-4-9} \right)\times 1000 $

$  M=4000+\left( \frac{14000}{23} \right) $

$  M=4608.695 $

Hence, the mode of the given data is \[4608.7\] runs.


6. A student noted the number of cars passing through a spot on a road for \[\mathbf{100}\]  periods each of \[\mathbf{3}\]  minutes and summarised it in the table given below. Find the mode of the data:


Number

of cars

\[0-10\] 

\[10-20\]  

\[20-30\] 

\[30-40\] 

\[40-50\] 

\[50-60\]

\[60-70\]

\[70-80\]

Frequency

\[7\]  

\[14\] 

\[13\] 

\[12\]  

\[20\] 

\[11\]

\[15\]

\[8\]



Ans: Mode can be calculated as

$M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h$

Where

\[l=\] Lower limit of modal class

${{\text{f}}_{1}}=$ Frequency of modal class

\[{{f}_{0}}=\] Frequency of class preceding the modal class

\[{{f}_{2}}=\] Frequency of class succeeding the modal class

\[h=\]Class size

From the given data, it can be observed that the maximum class frequency is $20$,

Belonging to \[40-50\] class intervals.

Therefore, modal class = \[40-50\]

\[l=40\] 

\[{{f}_{1}}=20\] 

\[{{f}_{0}}=12\] 

\[{{f}_{2}}=11\] 

\[h=10\] 

Substituting these values in the formula of mode we get:

$  M=l+\left( \frac{{{f}_{1}}-{{f}_{0}}}{2{{f}_{1}}-{{f}_{0}}-{{f}_{2}}} \right)\times h $

$  M=40+\left( \frac{20-12}{2(20)-12-11} \right)\times 10 $

$  M=40+\left( \frac{80}{40-23} \right) $

$  M=44.7 $

Hence, the mode of this data is $44.7$ cars.


Conclusion

Vedantu's NCERT Solutions for Class 10 Maths Chapter 13 Exercise 13.2 - Statistics explains how to calculate the mode for grouped data. It is important to focus on knowing the formula and correctly understanding frequency distribution tables. This practice is necessary for improving your data analysis qualities and knowing statistical metrics. By carefully practising these solutions, you will improve your understanding of statistics, which will help you with your exams and further studies.


Class 10 Maths Chapter 13: Exercises Breakdown

Exercise

Number of Questions

Exercise 13.1

9 Questions & Solutions (9 Long Answers)

Exercise 13.3

7 Questions & Solutions (6 Long Answers)



CBSE Class 10 Maths Chapter 13 Other Study Materials



Chapter-Specific NCERT Solutions for Class 10 Maths

Given below are the chapter-wise NCERT Solutions for Class 10 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Study Resources for Class 10 Maths

For complete preparation of Maths for CBSE Class 10 board exams, check out the following links for different study materials available at Vedantu.

WhatsApp Banner
Best Seller - Grade 10
View More>
Previous
Next

FAQs on NCERT Solutions for Class 10 Maths Chapter 13 Statistics Ex 13.2

1. What is the step-by-step method to calculate the mode for grouped data as per the NCERT Solutions for Class 10 Maths Chapter 13 Exercise 13.2?

  • Identify the modal class: This is the class interval with the highest frequency in the distribution table.
  • Apply the standard mode formula for grouped data:
    Mode = L + [(f1-f0) / (2f1 - f0 - f2)] × h, where:
    - L is the lower class boundary of the modal class
    - f1 is the frequency of the modal class
    - f0 is the frequency of the class before the modal class
    - f2 is the frequency of the class after the modal class
    - h is the class width
  • Substitute the values from your frequency table as per the problem and calculate the mode.

2. How does the mean differ from the mode in the context of grouped data in Class 10 Maths Chapter 13?

The mean is the average value of the dataset, calculated using all the observations. The mode represents the most frequently occurring value or class. In grouped data, the mean may reflect the general average, while the mode highlights the most common class interval. Both are measures of central tendency but may yield different values based on the data distribution.

3. What common errors should students avoid while applying the mode formula for grouped data in NCERT Solutions for Class 10 Maths Chapter 13?

  • Incorrectly identifying the modal class (not always the class with the numerically largest interval but the one with highest frequency)
  • Miscalculating the class width (h), especially when intervals are uneven
  • Substituting wrong values for f0, f1, or f2
  • Omitting units in the final answer
  • Not checking if the modal class really has the maximum frequency

4. Why is learning to calculate the mode of grouped data important as per Class 10 Maths Chapter 13 NCERT Solutions?

Understanding how to find the mode of grouped data helps students analyze large datasets and identify the most common occurrence within a set, which is valuable in fields like economics, social sciences, and quality control. It also builds strong foundational knowledge for higher-level statistics in future classes.

5. What is the significance of the modal class in solving questions from Class 10 Maths Chapter 13 Exercise 13.2?

The modal class is crucial because it determines the base interval for mode calculation in grouped data. All other values in the formula depend on correctly identifying this class. Without the right modal class, the computed mode will not accurately describe the dataset's most common value.

6. How do you find the mean of grouped data using the assumed mean method as per NCERT Solutions for Class 10 Maths Chapter 13?

  • Select an assumed mean (a) close to the class marks
  • Find deviations (di = xi - a) for each class mark xi
  • Calculate ui = di / h, where h is the class interval width
  • Multiply each frequency (fi) with corresponding ui and sum all products
  • Apply the formula: Mean = a + [ (Σfiui)/Σfi ] × h

7. In which real-life situations can the concept of mode from Class 10 Statistics be applied?

The concept of mode is applied in determining most common salaries in a company, most frequently sold product sizes, household expenditure analysis, and identifying the most common age group of patients in a hospital, as practiced in the NCERT Solutions for Class 10 Maths Chapter 13 Exercise 13.2.

8. What is meant by ungrouped data in the context of Class 10 Maths Chapter 13, and how is it different from grouped data?

Ungrouped data refers to data presented in raw, individual form, without being classified into intervals. Grouped data is organized into classes or intervals with corresponding frequencies. Calculations like mean and mode differ for each, with grouped data requiring specialized formulas as in Exercise 13.2.

9. How can practicing the NCERT Solutions for Class 10 Maths Chapter 13 help improve exam performance?

Practicing these NCERT Solutions ensures students:

  • Understand and apply stepwise statistical methods as per CBSE pattern
  • Avoid common calculation mistakes
  • Strengthen problem-solving and critical analysis skills
  • Gain familiarity with likely exam question formats
All of which boost confidence and accuracy in board exams.

10. What are fundamental differences between the mean, median, and mode in statistics, as covered in NCERT Class 10 Maths Chapter 13?

  • Mean: Arithmetic average of all values
  • Median: Middle value when data is arranged in order
  • Mode: Value or class with the highest frequency
Each measure gives a different type of central tendency insight about the data.

11. Why is it essential to correctly calculate class marks and frequencies when solving grouped data questions?

Accurate calculation of class marks and frequencies ensures correct identification of modal and mean values. Errors in class intervals or frequency tallying will result in incorrect application of formulas and thus wrong answers, impacting both accuracy and concept clarity.

12. How do Vedantu's NCERT Solutions for Class 10 Maths Chapter 13 Exercise 13.2 make statistical concepts easier to understand?

Vedantu's solutions provide step-by-step, expert-verified explanations for every problem, using CBSE-recommended methods. This makes it simple for students to grasp calculation procedures, improve conceptual clarity, and practice efficiently for exams.

13. What role does frequency distribution play in solving Exercise 13.2 of NCERT Class 10 Maths Chapter 13?

Frequency distribution organizes data into intervals and shows how often each interval occurs. It is fundamental for finding modal class and applying both mean and mode formulas correctly, as every step in Exercise 13.2 depends on this distribution.

14. If two classes share the highest frequency in grouped data, how should students approach finding the mode?

If there is a bimodal distribution (two classes with equal maximum frequency), students should state both classes as modal and may mention that the mode is not unique. For CBSE exams, follow the method specified or consult the teacher's instruction for such cases.

15. How does understanding the steps to find the mode help in analyzing real-world data sets in higher classes?

Learning the steps to find the mode builds core data analysis skills applicable in senior classes, competitive exams, and various fields like social sciences, economics, research, and business analytics, where identifying trends or majorities in large datasets is essential.