Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Maths Chapter 10 Vector Algebra – NCERT Solutions Exercise 10.3 [2025]

ffImage
banner

Download Free PDF of Vector Algebra Exercise 10.3 Solutions for Class 12 Maths

You're about to tackle NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.3, a fundamental step for mastering vector algebra in the board exams. In this exercise, you'll get plenty of practice with vector addition, subtraction, and scalar multiplication, all core topics that help unlock more advanced concepts in three-dimensional geometry and physics later this year.

toc-symbolTable of Content
toggle-arrow

Here, you'll find concise, stepwise guidance for questions exactly like “exercise 10.3 class 12” and “class 12 ex 10.3,” with every solution mapped to the latest board marking scheme. Because this chapter carries a 7-mark weightage within your CBSE exam and typically appears in every Maths paper, thorough revision here means higher scores and fewer mistakes.


Vedantu ensures each explanation addresses properties of vectors and the practical importance of the head-to-tail method in finding resultant vectors. If you want to check the official exam blueprint, you can review the Class 12 Maths syllabus at any time—just remember, steady revision here prepares you confidently for both your upcoming boards and quick doubt solving throughout the year.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 10 - Vector Algebra Exercise 10.3

Exercise 10.3

1. Find the angle between two vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ with magnitudes $\sqrt{3}$ and $2$ , respectively having $\overrightarrow{a}.\overrightarrow{b}=\sqrt{6}$

Ans: It is given in the question that

$\left| \overrightarrow{a} \right|=\sqrt{3}$

$\left| \overrightarrow{b} \right|=2$

$\overrightarrow{a}.\overrightarrow{b}=\sqrt{6}$

Also we know that 

$\text{    }\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $where $\theta $ is the angle between the vectors

$\Rightarrow \sqrt{6}=2\sqrt{3}\cos \theta $

$\Rightarrow \cos \theta =\dfrac{1}{\sqrt{2}}$

Henc the angle between the vectors is $\dfrac{\pi }{4}$


2. Find the angle between the vectors $\widehat{i}-2\widehat{j}+3\widehat{k}$ and $3\widehat{i}-2\widehat{j}+\widehat{k}$

Ans: Let the given vectors be 

$\overrightarrow{a}=\widehat{i}-2\widehat{j}+3\widehat{k}$

$\overrightarrow{b}=3\widehat{i}-2\widehat{j}+\widehat{k}$

We know that 

$\text{    }\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $where $\theta $ is the angle between the vectors

$\Rightarrow \left( \widehat{i}-2\widehat{j}+3\widehat{k} \right).\left( 3\widehat{i}-2\widehat{j}+\widehat{k} \right)=\sqrt{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}\sqrt{{{3}^{2}}+{{2}^{2}}+{{1}^{2}}}$

$\Rightarrow 10=14\cos \theta $

Hence, we found $\theta ={{\cos }^{-1}}\left( \dfrac{5}{7} \right)$


3. Find the projection of the vector $\widehat{i}-\widehat{j}$ on the vector $\widehat{i}+\widehat{j}$

Ans: Given we have vectors

 $\overrightarrow{a}=\widehat{i}-\widehat{j}$ and 

$\overrightarrow{b}=\widehat{i}+\widehat{j}$ 

Now the projection of $\overrightarrow{a}$ on $\overrightarrow{b}$ is given by

$\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{b} \right|}=\dfrac{\left( \widehat{i}-\widehat{j} \right).\left( \widehat{i}+\widehat{j} \right)}{\sqrt{2}}$

Hence, the projection of $\widehat{i}-\widehat{j}$ on $\widehat{i}+\widehat{j}$ is $0$


4. Find the projection of the vector $\widehat{i}+3\widehat{j}+7\widehat{k}$ on the vector $7\widehat{i}-\widehat{j}+8\widehat{k}$

Ans: : Given we have vectors

 $\overrightarrow{a}=\widehat{i}+3\widehat{j}+7\widehat{k}$ and 

$\overrightarrow{b}=7\widehat{i}-\widehat{j}+8\widehat{k}$ 

Now the projection of $\overrightarrow{a}$ on $\overrightarrow{b}$ is given by

$\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{b} \right|}=\dfrac{\left( \widehat{i}+3\widehat{j}+7\widehat{k} \right).\left( \widehat{i}+3\widehat{j}+7\widehat{k} \right)}{\sqrt{114}}$

Hence, the projection of $\widehat{i}-\widehat{j}$ on $\widehat{i}+\widehat{j}$ is $\dfrac{60}{\sqrt{114}}$


5. Show that each of the given three vectors is a unit vector:

$\dfrac{1}{7}\left( 2\widehat{i}+3\widehat{j}+6\widehat{k} \right)$, $\dfrac{1}{7}\left( 3\widehat{i}-6\widehat{j}+2\widehat{k} \right)$, $\dfrac{1}{7}\left( 6\widehat{i}+2\widehat{j}-3\widehat{k} \right)$

Also, show that they are mutually perpendicular to each other.

Ans: let us have following notations 

 $7\overrightarrow{a}=2\widehat{i}+3\widehat{j}+6\widehat{k}$

$7\overrightarrow{b}=3\widehat{i}-6\widehat{j}+2\widehat{k}$

$7\overrightarrow{c}=6\widehat{i}+2\widehat{j}-3\widehat{k}$

Its magnitude is given by

$\text{   }7a=\sqrt{{{2}^{2}}+{{3}^{2}}+{{6}^{2}}}$

$\Rightarrow a=\dfrac{7}{7}=1$

Hence, the magnitude is $1$, it is a unit vector 

Similarly, magnitude of $7\overrightarrow{b}$ is given by

$\text{   }7b=\sqrt{{{3}^{2}}+{{6}^{2}}+{{2}^{2}}}$

$\Rightarrow b=\dfrac{7}{7}=1$

Hence, the magnitude is $1$, it is a unit vector 

Similarly, magnitude of $7\overrightarrow{c}$ is given by

$\text{   }7c=\sqrt{{{6}^{2}}+{{2}^{2}}+{{3}^{2}}}$

$\Rightarrow c=\dfrac{7}{7}=1$

Hence, the magnitude is $1$, it is a unit vector 

Now we will calculate the followings

$\overrightarrow{a}.\overrightarrow{b}=\dfrac{1}{7}\left( 2\widehat{i}+3\widehat{j}+6\widehat{k} \right).\left( 3\widehat{i}-6\widehat{j}+2\widehat{k} \right)=0$

$\overrightarrow{c}.\overrightarrow{b}=\dfrac{1}{7}\left( 6\widehat{i}+2\widehat{j}-3\widehat{k} \right).\left( 3\widehat{i}-6\widehat{j}+2\widehat{k} \right)=0$

$\overrightarrow{a}.\overrightarrow{c}=\dfrac{1}{7}\left( 2\widehat{i}+3\widehat{j}+6\widehat{k} \right).\left( 6\widehat{i}+2\widehat{j}-3\widehat{k} \right)=0$

Hence, all these vectors are mutually perpendicular


6. Find $\left| \overrightarrow{a} \right|$ and $\left| \overrightarrow{b} \right|$ , if $\left( \overrightarrow{a}+\overrightarrow{b} \right).\left( \overrightarrow{a}-\overrightarrow{b} \right)=8$ and $\left| \overrightarrow{a} \right|=8\left| \overrightarrow{b} \right|$

Ans: Given in the question that 

$\left( \overrightarrow{a}+\overrightarrow{b} \right).\left( \overrightarrow{a}-\overrightarrow{b} \right)=8$……($1$)

$\left| \overrightarrow{a} \right|=8\left| \overrightarrow{b} \right|$                       …… ($2$)

Now from ($1$) 

${{\left| \overrightarrow{a} \right|}^{2}}-{{\left| \overrightarrow{b} \right|}^{2}}=8$

Also from ($2$)

${{\left| \overrightarrow{b} \right|}^{2}}\left( 64-1 \right)=8$

$\Rightarrow \left| \overrightarrow{b} \right|=\sqrt{\dfrac{8}{63}}$

Hence, $\left| \overrightarrow{a} \right|=8\sqrt{\dfrac{8}{63}}$


7. Evaluate the product $\left( 3\overrightarrow{a}-5\overrightarrow{b} \right).\left( \overrightarrow{2a}+7\overrightarrow{b} \right)$

Ans: We are given with two vectors $3\overrightarrow{a}-5\overrightarrow{b}$ and $2\overrightarrow{a}+7\overrightarrow{b}$

Now $\left( 3\overrightarrow{a}-5\overrightarrow{b} \right).\left( 2\overrightarrow{a}+7\overrightarrow{b} \right)=6{{a}^{2}}+11\overrightarrow{a}.\overrightarrow{b}-35{{b}^{2}}$


8. Find the magnitude of two vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ , having the same magnitude and such that the angle between them is ${{60}^{\circ }}$ and their scalar product is $\dfrac{1}{2}$

Ans: It is given in the question 

$\theta ={{60}^{\circ }}$

$\overrightarrow{a}.\overrightarrow{b}=\dfrac{1}{2}$

According to the question 

$\dfrac{1}{2}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\dfrac{1}{2}$

$\Rightarrow \left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=1$


9. Find $\left| \overrightarrow{x} \right|$ , if for a unit vector $\overrightarrow{a}$, $\left( \overrightarrow{x}-\overrightarrow{a} \right).\left( \overrightarrow{x}+\overrightarrow{a} \right)=12$

Ans: It is given that $\left| \overrightarrow{a} \right|=1$

$\left( \overrightarrow{x}-\overrightarrow{a} \right).\left( \overrightarrow{x}+\overrightarrow{a} \right)=12$

$\text{        }\Rightarrow {{\left| \overrightarrow{x} \right|}^{2}}-1=12$  (since $\left| \overrightarrow{a} \right|=1$)

Hence, we found that $\left| \overrightarrow{x} \right|=\sqrt{13}$


10. If $\overrightarrow{a}=2\widehat{i}+2\widehat{j}+3\widehat{k},\overrightarrow{b}=-\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}$  are such that $\overrightarrow{a}+\lambda \overrightarrow{b}$ perpendicular to c ,then find the value of $\lambda $

Ans: The given vectors are 

$\text{           }\overrightarrow{a}=2\widehat{i}+2\widehat{j}+3\widehat{k}$

$\text{           }\overrightarrow{b}=-\widehat{i}+2\widehat{j}+\widehat{k}$

$\therefore \overrightarrow{a}+\lambda \overrightarrow{b}=\left( 2-\lambda  \right)\widehat{i}+\left( 2+2\lambda  \right)\widehat{j}+\left( 3-\lambda  \right)\widehat{k}$

$\text{           }\overrightarrow{c}=3\widehat{i}+\widehat{j}$

According to the question 

$\text{                                          }\left( \overrightarrow{a}+\lambda \overrightarrow{b} \right).\left( 3\widehat{i}+\widehat{j} \right)=0$

$\Rightarrow \left( \left( 2-\lambda  \right)\widehat{i}+\left( 2+2\lambda  \right)\widehat{j}+\left( 3-\lambda  \right)\widehat{k} \right).\left( 3\widehat{i}+\widehat{j} \right)=0$

Hence, we found that $\lambda =8$


11. Show that:

$\overrightarrow{\left| a \right|}\overrightarrow{b}+\left| \overrightarrow{b} \right|\overrightarrow{a}$ is perpendicular to $\overrightarrow{\left| a \right|}\overrightarrow{b}-\left| \overrightarrow{b} \right|\overrightarrow{a}$ For any two nonzero vectors $\overrightarrow{a}$ and $\overrightarrow{b}$

Ans: Let us suppose the two vectors as shown

$\overrightarrow{\eta }=\left| \overrightarrow{a} \right|\overrightarrow{b}+\left| \overrightarrow{b} \right|\overrightarrow{a}$

$\overrightarrow{\kappa }=\left| \overrightarrow{a} \right|\overrightarrow{b}-\left| \overrightarrow{b} \right|\overrightarrow{a}$

Now $\overrightarrow{\eta }.\overrightarrow{\kappa }=\left( \left| \overrightarrow{a} \right|\overrightarrow{b}+\left| \overrightarrow{b} \right|\overrightarrow{a} \right).\left( \left| \overrightarrow{a} \right|\overrightarrow{b}-\left| \overrightarrow{b} \right|\overrightarrow{a} \right)$

$\Rightarrow \overrightarrow{\eta }.\overrightarrow{\kappa }={{\left| \overrightarrow{a} \right|}^{2}}{{\left| \overrightarrow{b} \right|}^{2}}-{{\left| \overrightarrow{a} \right|}^{2}}{{\left| \overrightarrow{b} \right|}^{2}}=0$

Hence, proved


12. If $\overrightarrow{a}.\overrightarrow{a}=0$and $\overrightarrow{a}.\overrightarrow{b}=0$ , then what can be concluded above the vector $\overrightarrow{b}$?

Ans: Given we have two equations 

$\overrightarrow{a}.\overrightarrow{a}=0$…….($1$)

$\overrightarrow{a}.\overrightarrow{b}=0$

It is clear from the equation ($1$) that ${{\left| a \right|}^{2}}=0$

Hence, $\overrightarrow{b}$ can be any vector 


13. If $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are unit vectors such that $\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0$  , find the value of $\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a}$

Ans: Given we have three unit vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ such that 

$\text{                                      }\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0$

$\text{             }\Rightarrow \left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right).\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)=0$

$\Rightarrow {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( \overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a} \right)=0$

$\text{                       }\Rightarrow \left( \overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a} \right)=\dfrac{-3}{2}$


14. If either $\overrightarrow{a}=0$ or$\overrightarrow{b}=0$ vector , then  But the converse need not be true. Justify your answer with an example.

Ans: Let us suppose two vectors as shown

$\overrightarrow{a}=2\widehat{i}+4\widehat{j}+3\widehat{k}$ 

$\overrightarrow{b}=3\widehat{i}+3\widehat{j}-6\widehat{k}$

Now $\overrightarrow{a}.\overrightarrow{b}=\left( 2\widehat{i}+4\widehat{j}+3\widehat{k} \right).\left( 3\widehat{i}+3\widehat{j}-6\widehat{k} \right)$

$\Rightarrow \overrightarrow{a}.\overrightarrow{b}=6+12-18=0$

But clearly neither $\overrightarrow{a}=0$nor $\overrightarrow{b}=0$


15. If the vertices A,B,C of a triangle ABC are $\left( 1,2,3 \right)$, $\left( -1,0,0 \right)$ and $\left( 0,1,2 \right)$ respectively then find $\angle ABC$ 

Ans: It is given that the vertices of $\Delta ABC$ are 

$A\left( 1,2,3 \right)$

$B\left( -1,0,0 \right)$

$C\left( 0,1,2 \right)$

Now $\angle ABC$ is the angle between $\overrightarrow{BA}$ and $\overrightarrow{BC}$

$\therefore \overrightarrow{BA}.\overrightarrow{BC}=\left( 2\widehat{i}+2\widehat{j}+3\widehat{k} \right).\left( \widehat{i}+\widehat{j}+2\widehat{k} \right)$

$\text{     }\Rightarrow 10=\sqrt{17}\sqrt{6}\cos \angle ABC$

Hence, we found that $\angle ABC={{\cos }^{-1}}\left( \dfrac{10}{\sqrt{17}\sqrt{6}} \right)$


16. Show that the points $A\left( 1,2,7 \right)$, $B\left( 2,6,3 \right)$and $C\left( 3,10,-1 \right)$ are collinear

Ans: Given we have points as shown

$A\left( 1,2,7 \right)$

$B\left( 2,6,3 \right)$

$C\left( 3,10,-1 \right)$

$\therefore \overrightarrow{AB}=\widehat{i}+4\widehat{j}-4\widehat{k}$

$\therefore \overrightarrow{BC}=\left( \widehat{i}+4\widehat{j}-4\widehat{k} \right)$

$\therefore \overrightarrow{AC}=2\left( \widehat{i}+4\widehat{j}-4\widehat{k} \right)$

Clearly, 

$\left| \overrightarrow{AC} \right|=\left| \overrightarrow{BC} \right|+\left| \overrightarrow{AB} \right|$

Hence, vectors are collinear


17. Show that the vectors $2\widehat{i}-\widehat{j}+\widehat{k}$, $\widehat{i}-3\widehat{j}-5\widehat{k}$, $3\widehat{i}-4\widehat{j}-4\widehat{k}$ forms the vertices of the right angled triangle 

Ans: It is given in the question that

$\overrightarrow{OA}=2\widehat{i}-\widehat{j}+\widehat{k}$

$\overrightarrow{OB}=\widehat{i}-3\widehat{j}-5\widehat{k}$

$\overrightarrow{OC}=3\widehat{i}-4\widehat{j}-4\widehat{k}$

Where $\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$ are position vectors of A,B,C

Now 

$\overrightarrow{AB}=-\widehat{i}-2\widehat{j}-6\widehat{k}$

$\left| \overrightarrow{AB} \right|=\sqrt{{{\left( -1 \right)}^{2}}+{{\left( -2 \right)}^{2}}+{{\left( -6 \right)}^{2}}}=\sqrt{41}$

$\overrightarrow{BC}=-2\widehat{i}-\widehat{j}+\widehat{k}$

$\left| \overrightarrow{BC} \right|=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{1}^{2}}}=\sqrt{6}$

$\left| \overrightarrow{AC} \right|=\sqrt{35}$

Clearly $\left| \overrightarrow{AC} \right|+\left| \overrightarrow{BC} \right|=\sqrt{41}=\left| \overrightarrow{AB} \right|$

Hence, proved


18. If $\overrightarrow{a}$ is a non-zero vector of magnitude ‘a’ and $\lambda $ a non-zero scalar, then $\lambda \overrightarrow{a}$ is unit vector for what value of $\lambda $

Ans: Given we have a vector $\overrightarrow{a}$ and a scalar $\lambda $

For $\lambda \overrightarrow{a}$ to be a unit vector 

$\left| \lambda \overrightarrow{a} \right|=1$

Hence, the value is$\left| \lambda  \right|=\dfrac{1}{a}$


Conclusion

Class 12 Exercise 10.3 of NCERT Solutions for Maths Chapter 10 - Vector Algebra is crucial for board exam preparation. It focuses on the scalar (dot) product of two vectors and the projection of a vector on a line, key concepts in vector algebra. Pay close attention to the properties of the scalar product and their applications. Practice the formulas in class 12 exercise 10.3 for the dot product and vector projection thoroughly, as they are foundational for advanced topics. Solving these questions with Vedantu’s guidance will solidify your understanding and help you tackle complex problems in exams.


Class 12 Maths Chapter 10: Exercises Breakdown

S.No.

Chapter 10 - Vector Algebra Exercises in PDF Format

1

Class 12 Maths Chapter 10 Exercise 10.1 - 5 Questions & Solutions (5 Short Answers)

2

Class 12 Maths Chapter 10 Exercise 10.2 - 19 Questions & Solutions (5 Short Answers, 14 Long Answers)

3

Class 12 Maths Chapter 10 Exercise 10.4 - 12 Questions & Solutions (4 Short Answers, 8 Long Answers)

4

Class 12 Maths Chapter 10 Miscellaneous Exercise - 19 Questions & Solutions



CBSE Class 12 Maths Chapter 10 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on CBSE Class 12 Maths Chapter 10 Vector Algebra – NCERT Solutions Exercise 10.3 [2025]

1. What are the essential steps for solving NCERT Class 12 Maths Chapter 10 Vector Algebra Exercise 10.3 questions as per CBSE guidelines?

Start by expressing all vectors in component form (using i, j, k). Identify the required operation (such as dot product or projection). Apply vector algebra formulas and laws strictly as per the NCERT textbook. Calculate each component step-by-step, following the correct sequence. Always include magnitude and direction where needed, and cross-check against the latest CBSE marking scheme to avoid errors.

2. Which key vector algebra formulas are repeatedly used in solving Exercise 10.3 problems for board and JEE exams?

The frequently applied formulas in Exercise 10.3 include:

  • Dot product: \( \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 \)
  • Projection of vector a on b: \( (\vec{a} \cdot \vec{b})/|\vec{b}| \)
  • Magnitude of a vector: \( |\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} \)
  • Unit vector: \( \hat{a} = \vec{a}/|\vec{a}| \)

Mastery of these ensures high accuracy in board and competitive exams.

3. How does following stepwise NCERT solutions benefit students in board and JEE vector algebra questions?

Stepwise solutions help students present answers clearly for full marks, reduce calculation mistakes, and align responses with official NCERT wording and marking schemes. This method also enhances understanding of each concept and builds speed and accuracy for both CBSE boards and entrance exams.

4. What common errors should be avoided while attempting Class 12 Maths Chapter 10 Exercise 10.3?

Students should avoid:

  • Missing signs or component values in i, j, k notation
  • Applying incorrect vector laws (e.g., not using the triangle or parallelogram law when needed)
  • Skipping the calculation or mention of magnitude or direction
  • Copying from outdated or unofficial solutions not matching the current syllabus

5. Why are the dot product and projection of vectors central topics in Exercise 10.3 of Class 12 Vector Algebra?

These operations are core to vector algebra, forming the basis for solving geometric and physics-based problems involving force, displacement, and directions. Understanding them builds the foundational skills required for advanced chapters and competitive exams.

6. How can I identify if three given vectors are mutually perpendicular and unit vectors using NCERT methods?

Calculate the magnitude of each vector; each should be 1 for a unit vector. Then, compute the dot products of every pair—if all are zero, the vectors are mutually perpendicular, as per NCERT and CBSE guidelines.

7. What does it mean if the dot product of two vectors is zero in Exercise 10.3 problems?

If the dot product is zero, the vectors are perpendicular (orthogonal) to each other. However, the converse is not always true—two nonzero vectors may have a zero dot product.

8. In what ways should vectors be represented in Class 12 solutions for full marks?

Always represent vectors in component (i, j, k) form, clearly write intermediate steps, and maintain correct mathematical symbols. This matches the CBSE marking scheme and ensures each calculation can be easily followed by the examiner.

9. What steps prove if given 3D points are collinear using vector algebra in Exercise 10.3?

Find the vectors between the points (e.g., \( \overrightarrow{AB}, \overrightarrow{BC} \)), check if one is a scalar multiple of the other, and confirm that the sum of their magnitudes equals the distance from the first to the last point. This vector method establishes collinearity as per NCERT standards.

10. What misconceptions do students often have regarding unit vectors and scalar multiplication in NCERT vector algebra?

Students may think any scalar multiple is a unit vector; in reality, the scalar must be carefully chosen so that the resulting vector's magnitude equals 1. Always solve |λa| = 1 for the specific value of λ based on the original vector's magnitude.

11. How do vector algebra concepts in Chapter 10 support applications in physics and engineering after Class 12?

Vector addition, dot product, and projection are widely used to calculate resultant forces, motion, and work in physics and engineering contexts. A deep grasp in Class 12 enables students to tackle multi-dimensional problems in higher studies and competitive exams.

12. Why is verifying your answer against the NCERT marking scheme essential in solution writing?

Strictly matching your steps and expressions to the NCERT/CBSE marking scheme ensures no marks are lost for presentation, logic, or omitted steps, as examiners award marks not just for correct answers but also for correct working and format.