Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Miscellaneous Exercise

ffImage
banner

NCERT Solutions for Class 12 Maths Chapter 10 Miscellaneous Exercise - Free PDF Download

NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra includes solutions to all Miscellaneous Exercise problems. Class 12 Maths Chapter 10 Miscellaneous Exercise Solutions are based on the ideas presented in Maths Chapter 10. This practice is crucial for competitive exams as well as the CBSE Board exams. Get the Class 12 Maths Vector Algebra Miscellaneous Exercise NCERT Solutions in PDF format and practise them offline to do well in the board exam. Students can download the revised Class 12 Maths NCERT Solutions from our page, which is prepared so that you can understand it easily.

toc-symbolTable of Content
toggle-arrow


Miscellaneous Exercise Class 12 Chapter 10 Maths Solutions are aligned with the updated CBSE guidelines for Class 12, ensuring students are well-prepared for exams. Access the Class 12 Maths Syllabus here.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra

Miscellaneous Exercise

1. Write down a unit vector in the XY-plane, making an angle of ${30^\circ }$ with the positive direction of the x-axis. 

Ans: Unit vector is $\vec r = \cos \theta \hat i + \sin \theta \hat j$, where $\theta $ is angle with positive ${\text{X}}$ axis. $\vec r = \cos {30^\circ }\hat i + \sin {30^\circ }\hat j = \dfrac{{\sqrt 3 }}{2}\hat i + \dfrac{1}{2}\hat j$


2. Find the scalar components and magnitude of the vector joining the points ${\text{P}}\left( {{x_1},{y_1},{z_1}} \right)$ and ${\text{Q}}\left( {{x_2},{y_2},{z_2}} \right)$

Ans: $\overrightarrow {{\text{PQ}}}  = \left( {{x_2} - {x_1}} \right)\hat i + \left( {{y_2} - {y_1}} \right)\hat j + \left( {{z_2} - {z_1}} \right)\hat k$

$|\overrightarrow {{\text{PQ}}} |\; = \;\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $


3. A girl walks 4 km towards the west, then she walks 3 km in a direction ${30^\circ }$ east of north and stops. Determine the girl's displacement from her initial point of departure. 

Ans:


Determine the girl's displacement from her initial point of departure


$\overrightarrow {{\text{OA}}}  =  - 4\hat i$

$\overrightarrow {{\text{AB}}}  = \hat i|\overrightarrow {{\text{AB}}} |\cos {60^\circ } + \hat j|\overrightarrow {{\text{AB}}} |\sin {60^\circ }$

$ = \hat i3 \times \dfrac{1}{2} + \hat j3 \times \dfrac{{\sqrt 3 }}{2}$

$ = \dfrac{3}{2}\hat i + \dfrac{{3\sqrt 3 }}{2}\hat j$

$\overrightarrow {{\text{OB}}}  = \overrightarrow {{\text{OA}}}  + \overrightarrow {{\text{AB}}} $

$ = ( - 4\hat i) + \left( {\dfrac{3}{2}\hat i + \dfrac{{3\sqrt 3 }}{2}j} \right)$

$ = \left( { - 4 + \dfrac{3}{2}} \right)\hat i + \dfrac{{3\sqrt 3 }}{2}\hat j$

$ = \left( {\dfrac{{ - 8 + 3}}{9}} \right)\hat i + \dfrac{{3\sqrt 3 }}{9}\hat j$

$ = \dfrac{{ - 5}}{2}\vec i + \dfrac{{3\sqrt 3 }}{2}\hat j$


4. If $\overrightarrow a  = \vec b + \vec c$, then is it true that $|\overrightarrow a | = |\vec b| + |\vec c|$ ? Justify your answer. 

Ans:  $\operatorname{In} \Delta {\text{ABC}},\overrightarrow {\;CB}  = \vec a,\;\overrightarrow {CA}  = b,\;\overrightarrow {AB}  = \vec c$

$\vec a = \vec b + \vec c$,  by triangle law of addition for vectors.

$|\vec a|\; < \;|\vec b| + |\vec c|$,  by triangle inequality law of lengths.

 Hence, it's not true that $|\vec a| = |\vec b| + |\vec c|$


5. Find the value of $x$ for which $x(\hat i + \hat j + \hat k)$ unit vector.

Ans: $|x(\hat i + \hat j + \hat k)| = 1$

$ \Rightarrow \sqrt {{x^2} + {x^2} + {x^2}}  = 1$

$ \Rightarrow \sqrt {3{x^2}}  = 1$

$ \Rightarrow \sqrt 3 x = 1$

$ \Rightarrow x =  \pm \dfrac{1}{{\sqrt 3 }}$


6.  Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec a = 2\hat i + 3\hat j - \hat k$ and $\vec b = \hat i - 2\hat j + \hat k$

Ans: $\vec c = \vec a + \vec b = (2 + 1)\hat i + (3 - 2)\hat j + ( - 1 + 1)\hat k = 3\hat i + \hat j$

$|\vec c| = \sqrt {{3^2} + {1^2}}  = \sqrt {9 + 1}  = \sqrt {10} $

$\therefore \hat c = \dfrac{{\vec c}}{{|\vec c|}} = \dfrac{{(3\hat i + \hat j)}}{{\sqrt {10} }}$

So, a vector of magnitude 5 and parallel to the resultant of $\vec a$ and $\vec b$ is $ \pm 5(\hat c) =  \pm 5\left( {\dfrac{1}{{\sqrt {10} }}(3\hat i + \hat j)} \right) =  \pm \dfrac{{3\sqrt {10} }}{2}\hat i \pm \dfrac{{\sqrt {10} }}{2}\hat j$


7.  If $\vec a = \hat i + \hat j + \hat k\;,\;\vec b = 2\hat i - \hat j + 3\hat k$ and $\vec c = \hat i - 2\hat j + \hat k$, find a unit vector parallel to the vector $2\vec a - \vec b + 3\vec c$.

Ans: $2\vec a - \vec b + 3\vec c = 2(\hat i + \hat j + \hat k) - (2\hat i - \hat j + 3\hat k) + 3(\hat i - 2\hat j + \hat k)$

$ = 2\hat i + 2\hat j + 2\hat k - 2\hat i + j - 3\vec k + 3\hat i - 6\hat j + 3\hat k$

$ = 3\hat i - 3\hat j + 2\hat k$

$|2\vec a - \vec b + 3c| = \sqrt {{3^2} + {{( - 3)}^2} + {2^2}}  = \sqrt {9 + 9 + 4}  = \sqrt {22} $

Thus ,required unit vector is $\dfrac{{2\vec a - \vec b + 3\vec c}}{{|2\vec a - \vec b + 3\vec c|}} = \dfrac{{3\hat i - 3\hat j + 2\hat k}}{{\sqrt {22} }} = \dfrac{3}{{\sqrt {22} }}\hat i - \dfrac{3}{{\sqrt {22} }}\hat j + \dfrac{2}{{\sqrt {22} }}\hat k$


8. Show that the points ${\text{A}}(1, - 2, - 8),{\text{B}}(5,0, - 2)$ and ${\text{C}}(11,3,7)$ are collinear, and find the ratio in which B divides Ac. 

Ans: $\overrightarrow {{\text{AB}}}  = (5 - 1)\hat i + (0 + 2)\hat j + ( - 2 + 8)\hat k = 4\hat i + 2\hat j + 6\hat k$

$\overrightarrow {{\text{BC}}}  = (11 - 5)\hat i + (3 - 0)\hat j + (7 + 2)\hat k = 6\hat i + 3\hat j + 9\hat k$

$\overrightarrow {AC}  = (11 - 1)\hat i + (3 + 2)\hat j + (7 + 8)\hat k = 10\hat i + 5\hat j + 15\hat k$

$|\overrightarrow {{\text{AB}}} | = \sqrt {{4^2} + {2^2} + {6^2}}  = \sqrt {16 + 4 + 36}  = \sqrt {56}  = 2\sqrt {14} $

$|\overrightarrow {{\text{BC}}} | = \sqrt {{6^2} + {3^2} + {9^2}}  = \sqrt {36 + 9 + 81}  = \sqrt {126}  = 3\sqrt {14} $

$|\overrightarrow {AC} | = \sqrt {{{10}^2} + {5^2} + {{15}^2}}  = \sqrt {100 + 25 + 225}  = \sqrt {350}  = 5\sqrt {14} $

$\therefore \;\;|\overrightarrow {{\text{AC}}} | = |\overrightarrow {{\text{AB}}} | + |\overrightarrow {{\text{BC}}} |$

So, the points are collinear.

Let B divide AC in ratio $\lambda :1$. $\overrightarrow {{\text{OB}}}  = \dfrac{{\lambda \overrightarrow {{\text{OC}}}  + \overrightarrow {{\text{OA}}} }}{{(\lambda  + 1)}}$

$ \Rightarrow 5\hat i - 2\hat k = \dfrac{{\lambda (11\hat i + 3\hat j + 7\hat k) + (\hat i - 2\hat j - 8\hat k)}}{{\lambda  + 1}}$

$ \Rightarrow (\lambda  + 1)(5\hat i - 2\hat k) = 11\lambda \hat i + 3\lambda \hat j + 7\lambda \hat k + \hat i - 2\hat j - 8\hat k$

$ \Rightarrow 5(\lambda  + 1)\hat i - 2(\lambda  + 1)\hat k = (11\lambda  + 1)\hat i + (3\lambda  - 2)\hat j + (7\lambda  - 8)\hat k$

$ \Rightarrow \lambda  = \dfrac{2}{3}$

So, the required ratio is 2:3


9. Find the position vector of a point $R$ which divides the line joining two points $P$ and $Q$ whose position vectors are $(2\vec a + \vec b)$ and $(\vec a - 3\vec b)$ externally in the ratio 1: 2. Also, show that $P$ is the midpoint of the line segment RQ. 

Ans: $\overrightarrow {{\text{OP}}}  = 2\vec a + \vec b,\overrightarrow {{\text{OQ}}}  = \overrightarrow {\text{a}}  - 3\overrightarrow {\text{b}} $

$\overrightarrow {OR}  = \dfrac{{2(2\vec a + \vec b) - (\vec a - 3\vec b)}}{{2 - 1}} = \dfrac{{4\vec a + 2\vec b - \vec a - 3\vec b}}{1} = 3\vec a + 5\vec b$

So, the position vector of ${\text{R}}$ is $3\overrightarrow {\text{a}}  + 5\overrightarrow {\text{b}} $

Position vector of midpoint of ${\text{RQ}} = \dfrac{{\overrightarrow {{\text{OQ}}}  + \overrightarrow {{\text{OR}}} }}{2}$

$ = \dfrac{{(a\sqrt 6 ) + (3\vec a + 5\bar b)}}{2}$

$ = 2\vec a + \vec b$

$ = \overrightarrow {OP} $

Thus, ${\text{P}}$ is midpoint of line segment ${\text{RQ}}$


10. The two adjacent sides of a parallelogram are $2\hat i - 4\hat j + 5\hat k$ and $\hat i - 2\hat j - 3\hat k$. Find the unit vector parallel to its diagonal. Also, find its area. 

Ans:  Diagonal of a parallelogram is $\vec a + \vec b$ 

$\vec a + \vec b = (2 + 1)\hat i + ( - 4 - 2)\hat j + (5 - 3)\hat k = 3\hat i - 6\hat j + 2\hat k$

So, the unit vector parallel to diagonal is $\dfrac{{\vec a + \vec b}}{{|\vec a + \vec b|}} = \dfrac{{3\hat i - 6\hat j + 2\hat k}}{{\sqrt {{3^2} + {{( - 6)}^2} + {2^2}} }} = \dfrac{{3\hat i - 6\hat j + 2\hat k}}{{\sqrt {9 + 36 + 4} }} = \dfrac{{3\hat i - 6\hat j + 2\hat k}}{7} = \dfrac{3}{7}\hat i - \dfrac{6}{7}\hat j + \dfrac{2}{7}\hat k$

$\vec{a}\times \vec{b} = \begin{vmatrix} \hat i& \hat j &\hat k \\ 2& -4 & 3\\ 1& -2 & -3 \end{vmatrix}$

$ = \hat i(12 + 10) - \hat j( - 6 - 5) + \bar k( - 4 + 4)$

$ = 22\hat i + 11\hat j$

$ = 11(2\hat i + \hat j)$

$\therefore |\vec a \times \vec b| = 11\sqrt {{2^2} + {1^2}}  = 11\sqrt 5 $

So, the area of the parallelogram is $11\sqrt 5 $ sq units


11. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ  are $\dfrac{1}{{\sqrt 3 }}$ $\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }}$.

Ans: Let a vector be equally inclined to ${\text{OX}},{\text{OY}}$, and ${\text{OZ}}$ at an angle $\alpha $.

So, the Direction Cosines of the vector are $\cos \alpha ,\cos \alpha $and $\cos \alpha $.

${\cos ^2}\alpha  + {\cos ^2}\alpha  + {\cos ^2}\alpha  = 1$

$ \Rightarrow 3{\cos ^2}\alpha  = 1$

$ \Rightarrow \cos \alpha  = \dfrac{1}{{\sqrt 3 }}$

So, the DCs of the vector are $\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }}$.


12. Let $\vec a = \hat i + 4\hat j + 2\hat k$ and $\vec b = 3\hat i - 2\hat j + 7\hat k$ and $\vec c = 2\hat i - \hat j + 4\hat k$. Find a vector $\vec d$ which is

perpendicular to both $\vec a$ and $\vec b$ and $\vec c \cdot \vec d = 15$ 

Ans: $\vec d = {d_1}\hat i + {d_2}\hat \jmath  + {d_3}\hat k$

$\vec d\;.\;\vec a = 0 \Rightarrow {d_1} + 4{d_2} + 2{d_3} = 0$

$\vec d\;.\;\vec b = 0 \Rightarrow 3{d_1} - 2{d_2} + 7{d_3} = 0$

$\vec c \cdot \vec d = 15 \Rightarrow 2{d_1} - {d_2} + 4{d_3} = 15$

Solving these equations, we get ${d_1} = \dfrac{{160}}{3},{d_2} =  - \dfrac{5}{3},{d_3} =  - \dfrac{{70}}{3}$

$\therefore \vec d = \dfrac{{160}}{3}\hat i + \dfrac{5}{3}\widehat j + \dfrac{{70}}{3}\hat k = \dfrac{1}{3}(160\hat i + 5\hat j + 70\hat k)$


13. The scalar product of the vector $\hat i + \hat j + \hat k$ with a unit vector along the sum of vectors $2\hat i + 4\hat j - 5\hat k$ änd $\lambda \hat i + 2\hat j + 3\hat k$ is equal to one. Find the value of $\lambda $. 

Ans: $(2\hat i + 4\hat j - 5\hat k) + (\lambda \hat i + 2\hat j + 3\hat k) = (2 + \lambda )\hat i + 6\hat j - 2\hat k$

So, unit vector along $(2\hat i + 4\hat j - 5\hat k) + (\lambda \hat i + 2\hat j + 3\hat k)$ is $\left( {\dfrac{{(2 + \lambda )\hat i + 6\hat j - 2\hat k}}{{\sqrt {{\lambda ^2} + 4\lambda  + 44} }}} \right)$

$(\hat i + \hat j + \hat k) \cdot \left( {\dfrac{{(2 + \lambda )\hat i + 6\hat j - 2\hat k}}{{\sqrt {{\lambda ^2} + 4\lambda  + 44} }}} \right) = 1$

$ \Rightarrow \dfrac{{(2 + \lambda ) + 6 - 2}}{{\sqrt {{\lambda ^2} + 4\lambda  + 44} }} = 1$

$ \Rightarrow \sqrt {{\lambda ^2} + 4\lambda  + 44}  = \lambda  + 6$

$ \Rightarrow {\lambda ^2} + 4\lambda  + 44 = {(\lambda  + 6)^2}$

$ \Rightarrow {\lambda ^2} + 4\lambda  + 44 = {\lambda ^2} + 12\lambda  + 36$

$ \Rightarrow 8\lambda  = 8$

$ \Rightarrow \lambda  = 1$


14. If $\vec a,\vec b,\vec c$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec a + \vec b + \vec c$ is equally inclined to $\vec a\;,\;\vec b$ and $\vec c$. 

Ans: $\vec a\;.\;\vec b = \vec b\;.\;\vec c = \vec c\;.\;\vec a = 0$

$|\vec a| = |\vec b| = |\vec c|$

Let $\vec a + \vec b + \vec c$ be inclined to $\vec a,\vec b,\vec c$ at angles ${\theta _1},{\theta _2},{\theta _3}$ respectively. $\cos {\theta _1} = \dfrac{{(\vec a + \vec b + \vec c) \cdot \vec a}}{{|\vec a + \vec b + \vec c||\vec a\mid }} = \dfrac{{\vec a \cdot \vec a + \vec b \cdot \vec a + \vec c \cdot \vec a}}{{|\vec a + \vec b + \vec c||\vec a\mid }} = \dfrac{{|\vec a{|^2}}}{{|\vec a + \vec b + \vec c||\vec a|}} = \dfrac{{|\vec a|}}{{|\vec a + \vec b + \vec c|}}$

$\cos {\theta _2} = \dfrac{{(\vec a + \vec b + \vec c)\vec b}}{{|\vec a + \vec b + \vec c||\vec b\mid }} = \dfrac{{\vec a\vec b + \vec b\vec b + \vec c\vec b}}{{|\vec a + \vec b + \vec c||\vec b\mid }} = \dfrac{{|\vec b{|^2}}}{{|\vec a + \vec b + \vec c||\vec b|}} = \dfrac{{|\vec b|}}{{|\vec a + \vec b + \vec c|}}$

$\operatorname{os} {\theta _3} = \dfrac{{(\vec a + \vec b + \vec c) \cdot \vec c}}{{|\vec a + \vec b + \vec c||\bar c|}} = \dfrac{{\vec a\vec c + \vec b\vec c + \vec c\vec c}}{{|\vec a + \vec b + \vec c||\vec c\mid }} = \dfrac{{|\vec c{|^2}}}{{|\vec a + \vec b + \vec c||\vec c|}} = \dfrac{{|\vec c|}}{{|\vec a + \vec b + \vec c|}}$

Since, $|\vec a| = |\vec b| = |\vec c|\; \Rightarrow \;\cos {\theta _1} = \cos {\theta _2} = \cos {\theta _3}$, So, ${\theta _1} = {\theta _2} = {\theta _3}$


15. Prove that, $(\vec a + \vec b) \cdot (\vec a + \vec b) = \;|\vec a{|^2} + |\vec b{|^2}$ if and only if $\vec a,\vec b$ are perpendicular, given $\vec a \ne \vec 0,\vec b \ne 0$

Ans: $(\vec a + \vec b) \cdot (\vec a + \vec b) = |\vec a{|^2} + |\vec b{|^2}$

$ \Rightarrow \vec a \cdot \vec a + \vec a\;.\;\vec b + \vec b \cdot \vec a + \vec b\;.\;\vec b = |\vec a{|^2} + |\vec b{|^2}$

$ \Rightarrow |\vec a{|^2} + 2\vec a\;.\;\vec b + |\vec b{|^2} = |a{|^2} + |\vec b{|^2}$

$ \Rightarrow 2\vec a\;.\;\vec b = 0$

$ \Rightarrow \vec a\;.\;\vec b = 0$

So $\vec a$ and $\vec b$ are perpendicular.


16. If $\theta $ is the angle between two vectors $\vec a$ and $\vec b$, then $\vec a\vec b \geqslant 0$ only when

a. $0 < \theta  < \dfrac{\pi }{2}$

b. $0 \leqslant \theta  \leqslant \dfrac{\pi }{2}$

c. $0 < \theta  < \pi $

d. $0 \leqslant \theta  \leqslant \pi $

Ans: $\therefore \vec a\vec b \geqslant 0$

$ \Rightarrow |\vec a||\vec b|\cos \theta  \geqslant 0$

$ \Rightarrow \cos \theta  \geqslant 0\quad \because [|\vec a| \geqslant 0$ and $|\vec b| \geqslant 0]$

$ \Rightarrow 0 \leqslant \theta  \leqslant \dfrac{\pi }{2}$

$\vec a \cdot \vec b \geqslant 0$ if $0 \leqslant \theta  \leqslant \dfrac{\pi }{2}$

So the right answer is B


17. Let $\vec a$ and $\vec b$ be two unit vectors and $\theta $ is the angle between them. Then $\vec a + \vec b$ is a unit vector if

a. $\theta  = \dfrac{\pi }{4}$

b. $\theta  = \dfrac{\pi }{3}$

c. $\theta  = \dfrac{\pi }{2}$

d. $\theta  = \dfrac{{2\pi }}{3}$

Ans: $|\vec a| = |\vec b| = 1$

$|\vec a + \vec b| = 1$

$ \Rightarrow (\vec a + \overrightarrow b )(\vec a + \overrightarrow b ) = 1$

$ \Rightarrow \vec a \cdot \vec a + \vec a\;.\;\vec b + \vec b\;.\;\vec a + \vec b\;.\;\vec b = 1$

$ \Rightarrow |\vec a{|^2} + 2\vec a\;.\;\vec b + |\overrightarrow b {|^2} = 1$

$ \Rightarrow {1^2} + 2|\vec a||\vec b|\cos \theta  + {1^2} = 1$

$ \Rightarrow 1 + 2.1.1\cos \theta  + 1 = 1$

$ \Rightarrow \cos \theta  =  - \dfrac{1}{2}$

$ \Rightarrow \theta  = \dfrac{{2\pi }}{3}$

So, $\vec a + \vec b$ is unit vector if $\theta  = \dfrac{{2\pi }}{3}$ 

The correct answer is D


18. The value of $\hat i.(\hat j \times \hat k) + \hat j \cdot (\hat i \times \hat k) + \hat k \cdot (\hat i \times \hat j)$ is

$\begin{array}{*{20}{l}} {{\text{ a. }}0}&{{\text{ b. }} - 1}&{{\text{ c. }}1}&{{\text{ d. }}3} \end{array}$

Ans:

$\hat i \cdot (\hat j \times \hat k) + \hat j \cdot (\hat i \times \hat k) + \hat k \cdot (\hat i \times \hat j)$

$ = \hat i\;.\;\hat i + \hat j \cdot ( - \hat j) + \hat k\;.\;\hat k$

$ = 1 - 1 + 1$

$ = 1$

The correct answer is C.


19. If $\theta $ is the angle between any two vectors $\vec a$ and $\vec b$, then $|\vec a\vec b| = |\vec a \times \vec b|$ when $\theta $ is equal to

a. 0 

b. $\dfrac{\pi }{4}$

c. $\dfrac{\pi }{2}$

d. n

Ans: $|\vec a\vec b| = |\vec a \times \vec b|$

$ \Rightarrow |\vec a|\vec b|\cos \theta  = |\vec a||\vec b\mid \sin \theta $

$ \Rightarrow \cos \theta  = \sin \theta $

$ \Rightarrow \tan \theta  = 1$

$ \Rightarrow \theta  = \dfrac{\pi }{4}$

The correct answer is B


Conclusion

Miscellaneous Exercise Class 12 Chapter 10 is important for understanding various concepts thoroughly. Class 12 Maths Chapter 10 Miscellaneous Exercise Solutions covers diverse problems that require the application of multiple formulas and techniques. Rather than simply learning answers by heart, it's important to concentrate on understanding the fundamental ideas behind each question.


Class 12 Maths Chapter 10: Exercises Breakdown

Exercise

Number of Questions

Exercise 10.1

5 Questions and Solutions

Exercise 10.2

19 Questions and Solutions

Exercise 10.3

18 Questions and Solutions

Exercise 10.4

12 Questions and Solutions



CBSE Class 12 Maths Chapter 10 Other Study Materials



Chapter-Specific NCERT Solutions for Class 12 Maths

Given below are the chapter-wise NCERT Solutions for Class 12 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.


Additional Study Materials for Class 12 Maths 

WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 10 Vector Algebra Miscellaneous Exercise

1. What methods are used in NCERT Solutions for Class 12 Maths Chapter 10 to solve vector algebra problems as per the latest CBSE guidelines?

The solutions use step-wise vector methods, including vector addition, scalar (dot) product, vector (cross) product, section formulas, and graphical interpretation. Each answer explains the reasoning for each step, ensuring clear alignment with the 2025–26 CBSE syllabus.

2. How do NCERT Solutions for Vector Algebra ensure concept clarity over rote learning for students?

NCERT Solutions emphasise concept understanding by providing structured explanations, breaking down each calculation, and applying properties such as the triangle law and direction cosines. This approach helps students build foundational knowledge for board and competitive exams.

3. What types of questions are typically found in the miscellaneous exercise of Class 12 Maths Chapter 10?

The miscellaneous exercise covers a broad range of concepts, including:

  • Finding unit vectors and direction cosines
  • Calculating magnitudes and components of vectors
  • Applying vector product to solve geometry problems
  • Analyzing vectors for collinearity and perpendicularity
  • Real-life applications like displacement and area calculation

4. How is the position vector of a dividing point derived in NCERT Solutions for this chapter?

The position vector of a point dividing a line segment (externally or internally) is calculated using section formula in vector form:
OR = [(m × position vector of Q) + (n × position vector of P)] / (m + n) for internal division, with sign change for external division.

5. Why is the triangle inequality important in vector algebra, as shown in these solutions?

The triangle inequality establishes that the magnitude of the sum of two vectors is always less than or equal to the sum of their magnitudes. This rule prevents misconceptions, especially in problems where students may wrongly assume magnitudes simply add up.

6. In what way do the step-by-step solutions address common errors in vector product and scalar product calculations?

Solutions highlight typical mistakes such as sign confusion and misuse of cross or dot product properties. They clarify when to use each operation and provide detailed calculations, ensuring correct application for finding area, projections, or angle between vectors.

7. How are real-life applications incorporated into the solutions for Class 12 Vector Algebra?

Problems often include scenarios involving direction, displacement, and forces, using vectors to model and solve them. This bridges theory and practical usage, preparing students for applications in physics and engineering.

8. What conditions must be met for two vectors to be perpendicular, as detailed in the NCERT Solutions?

Two vectors are perpendicular if their dot product is zero. Solutions demonstrate this through examples and algebraic verification following the CBSE-approved definition.

9. How do NCERT Solutions ensure accuracy in finding the area of a parallelogram using vectors?

The area is determined using the magnitude of the cross product of two adjacent vectors. Stepwise calculations are provided, with a focus on correctly setting up and evaluating the determinant for the cross product.

10. What approach is used for finding the equation of a plane through three points using vectors?

The equation is derived by first forming two direction vectors from the given points, calculating their cross product to find the normal vector, and then applying the general vector equation of a plane. Each step is shown methodically for clarity.

11. How do the solutions address advanced questions involving direction cosines and ratios?

Problems involving direction cosines are solved by expressing the vector in component form, using the relationship that the sum of the squares of direction cosines equals one, and verifying results using standard formulas.

12. What should a student do if they get stuck on a particular type of vector problem in Miscellaneous Exercise?

Students should review the relevant concept in the CBSE Class 12 Maths Chapter 10 syllabus, revisit the step-by-step solutions, and practice similar problems from reference books or other vetted resources. Collaborative learning with peers or seeking expert guidance can also help.

13. In what ways do NCERT Solutions for Class 12 Vector Algebra align with competitive exam preparation (like JEE, NEET)?

The structured, step-wise solutions help strengthen problem-solving skills and deepen understanding of core vector concepts, all of which are frequently tested in competitive examinations.

14. What misconceptions about the addition of vector magnitudes are corrected in these solutions?

The solutions address the common misconception that the magnitude of a sum of vectors equals the sum of their magnitudes. Instead, they illustrate, using the triangle law and examples, that this is only true if the vectors point in the same direction.

15. How does understanding section formula in vector form benefit students in other chapters and subjects?

Mastering the section formula aids students in coordinate geometry, 3D geometry, and physics problems involving position, motion, and division of line segments, strengthening overall mathematical proficiency.