Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

ffImage
banner

NCERT Solutions for Class 12 Maths Chapter 4 -Determinants Exercise 4.1 - FREE PDF Download

NCERT Class 12 Maths Exercise 4.1 Solutions offered by Vedantu are compiled by learned teaching professionals according to the latest CBSE syllabus. These solutions for Class 12 Maths Exercise 4.1 are available in PDF format to help students gain access to them from anywhere and at any time. Our Class 12 Maths NCERT Solutions consists of shortcut techniques as well as elaborate explanations. You can download the NCERT Solutions PDF from our portal for all subjects and fetch higher grades on your boards.

toc-symbolTable of Content
toggle-arrow


Glance on NCERT Solutions Maths Chapter 4 Exercise 4.1 Class 12 | Vedantu

  • Exercise 4.1 of Chapter 4 in the NCERT Class 12 Maths book focuses on the calculation and properties of determinants, primarily for 2x2 and 3x3 matrices, Understanding minor and cofactor of an element.

  • The problems in 4.1 Maths Class 12 help students understand the basic concepts and applications of determinants.

  • There are links to video tutorials explaining class 12 chapter 4 Exercise 4.1 -Determinants for better understanding.

  • There are five examples and eight questions covered in NCERT Maths Class 10 Chapter 4 Exercise 4.1 Determinants.


Topics Covered in Class 12 Maths Chapter 4 Exercise 4.1

  • Introduction to determinants

  • Determinant of a 2x2 Matrix

  • Determinants of a 3x3 Matrix

  • Properties of Determinants

  • Minors and Cofactors

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 4 - Determinants Exercise 4.1 PDF

Exercise (4.1)

1. Evaluate the determinant: $\begin{vmatrix}2 & 4 \\ -5& -1 \\\end{vmatrix}$

Ans: Solving the determinant  $\begin{vmatrix}2 & 4 \\ -5& -1 \\\end{vmatrix}$ we have:

$\Rightarrow \begin{vmatrix} 2 & 4 \\ -5& -1 \\ \end{vmatrix}=2(-1)-4(-5)$ $\Rightarrow \begin{vmatrix} 2 & 4 \\ -5& -1 \\ \end{vmatrix}=-2+20$ $\Rightarrow \begin{vmatrix} 2 & 4 \\ -5& -1 \\ \end{vmatrix}=18$

2. Evaluate the determinants.

 i. \[\left| \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right|\] Ans: Solving the determinant

$\left| \begin{matrix} \cos \theta  & -\sin \theta   \\ \sin \theta  & \cos \theta   \\ \end{matrix} \right|$


We have: $\Rightarrow \left| \begin{matrix} \cos \theta  & -\sin \theta   \\ \sin \theta  & \cos \theta   \\ \end{matrix} \right|=\left( \cos \theta  \right)\left( \cos \theta  \right)-\left( -\sin \theta  \right)\left( \sin \theta  \right)$


\[\Rightarrow \left| \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right|=\text{ }{{\cos }^{2}}\theta +{{\sin }^{2}}\theta \] We know, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] \[\therefore \left| \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right|=1\] ii. \[\left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1} \\ \text{x+1} & \text{x+1} \\ \end{matrix} \right|\]

Ans: Solving the determinant

$\left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1}  \\ \text{x+1} & \text{x+1}  \\ \end{matrix} \right|$, 

We have: $\Rightarrow \left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1}  \\ \text{x+1} & \text{x+1}  \\ \end{matrix} \right|\text{=}\left( {{\text{x}}^{\text{2}}}\text{-x+1} \right)\left( \text{x+1} \right)\text{-}\left( \text{x-1} \right)\left( \text{x+1} \right)$ 

$\Rightarrow \left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1}  \\ \text{x+1} & \text{x+1}  \\ \end{matrix} \right|\text{= }{{\text{x}}^{\text{3}}}\text{-}{{\text{x}}^{\text{2}}}\text{+x+}{{\text{x}}^{\text{2}}}\text{-x+1-}\left( {{\text{x}}^{\text{2}}}\text{-1} \right)$ 

So, $\left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1}  \\ \text{x+1} & \text{x+1}  \\ \end{matrix} \right|\text{= }{{\text{x}}^{\text{3}}}\text{+1-}{{\text{x}}^{\text{2}}}\text{+1}$

$\therefore \left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1}  \\ \text{x+1} & \text{x+1}  \\ \end{matrix} \right|\text{= }{{\text{x}}^{\text{3}}}\text{-}{{\text{x}}^{\text{2}}}\text{+2}$.


3. If $\text{A=}$\[\left| \begin{matrix}1 & 2  \\   4 & 2  \\ \end{matrix} \right|\], then show that \[\left| \text{2A} \right|\text{=4}\left| \text{A} \right|\].

Ans: Given that,\[\text{A=}\left[ \begin{matrix} \text{1} & \text{2} \\ \text{4} & \text{2} \\ \end{matrix} \right]\] Multiplying $\text{A}$ by $2$, we have: \[\Rightarrow \text{2A= 2}\left[ \begin{matrix} \text{1} & \text{2} \\ \text{4} & \text{2} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{2} & \text{4} \\ \text{8} & \text{4} \\ \end{matrix} \right]\] \[\Rightarrow \text{2A=}\left[ \begin{matrix} \text{2} & \text{4} \\ \text{8} & \text{4} \\ \end{matrix} \right]\] \[\therefore \] L.H.S \[\text{=}\left| \text{2A} \right|\text{=}\left| \begin{matrix} \text{2} & \text{4} \\ \text{8} & \text{4} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{2A} \right|\text{=}2\times 4-4\times 8\] \[\Rightarrow \left| \text{2A} \right|\text{=}8-32\] \[\therefore \left| \text{2A} \right|\text{=}-24\] The value of determinant $\text{A}$ is \[\Rightarrow \left| \text{A} \right|\text{=}\left| \begin{matrix} \text{1} & \text{2} \\ \text{4} & \text{2} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=}2-8\] \[\therefore \left| \text{A} \right|\text{=}-6\] R.H.S is given as $\text{4}\left| \text{A} \right|$. \[\therefore \text{4}\left| \text{A} \right|\text{=4 }\!\!\times\!\!\text{ }\left( \text{-6} \right)\text{=-24}\] Hence, we have L.H.S $=$ R.H.S \[\therefore \left| \text{2A} \right|\text{=4}\left| \text{A} \right|\].

4. If \[\text{A=}\left[ \begin{matrix} 1 & 0 & 1  \\  0 & 1 & 2  \\ 0 & 0 & 4  \\  \end{matrix} \right]\], then show that \[\left| {\text{3A}} \right|\text{=27}\left| \text{A} \right|\].


Ans: Given, 

\[\text{A=}\left[ \begin{matrix} \text{1} & \text{0} & \text{1} \\ \text{0} & \text{1} & \text{2} \\ \text{0} & \text{0} & \text{4} \\ \end{matrix} \right]\] Determining the value of determinant $\text{A}$, by expanding along the first column, i.e., \[\text{C1}\], we get: \[\Rightarrow \left| \text{A} \right|\text{=1}\left| \begin{matrix} \text{1} & \text{2} \\ \text{0} & \text{4} \\ \end{matrix} \right|\text{-0}\left| \begin{matrix} \text{0} & \text{1} \\ \text{0} & \text{4} \\ \end{matrix} \right|\text{+0}\left| \begin{matrix} \text{0} & \text{1} \\ \text{1} & \text{2} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=}1\left( 4-0 \right)-0+0\] \[\Rightarrow \left| \text{A} \right|\text{=4}\] \[\therefore 27\left| \text{A} \right|\text{=27}\times \text{4}=\text{108}\] ……(1) The value of $\left| 3\text{A} \right|$ is obtained as: \[\begin{align} & \Rightarrow \text{3A=3}\left[ \begin{matrix} \text{1} & \text{0} & \text{1} \\ \text{0} & \text{1} & \text{2} \\ \text{0} & \text{0} & \text{4} \\ \end{matrix} \right] \\ & \Rightarrow \text{3A=}\left[ \begin{matrix} \text{3} & \text{0} & \text{3} \\ \text{0} & \text{3} & \text{6} \\ \text{0} & \text{0} & \text{12} \\ \end{matrix} \right] \\ \end{align}\] \[\therefore \left| \text{3A} \right|\text{=3}\left| \begin{matrix} \text{3} & \text{6} \\ \text{0} & \text{12} \\ \end{matrix} \right|\text{-0}\left| \begin{matrix} \text{0} & \text{3} \\ \text{0} & \text{12} \\ \end{matrix} \right|\text{+0}\left| \begin{matrix} \text{0} & \text{3} \\ \text{3} & \text{6} \\ \end{matrix} \right|\] \[\Rightarrow \text{3}\left( \text{36-0} \right)\text{+0+0}\] \[\Rightarrow \left| \text{3A} \right|\text{=3}\times \text{36}\] Thus, \[\left| \text{3A} \right|\text{=}108\] ……(2) From equations (1) and (2), we have: \[\left| \text{3A} \right|\text{=27}\left| \text{A} \right|\]

Hence proved.

5. Evaluate the determinants

i. \[\left| \begin{matrix} \text{3} & \text{-1} & \text{-2} \\ \text{0} & \text{0} & \text{-1} \\ \text{3} & \text{-5} & \text{0} \\ \end{matrix} \right|\]

Ans:Let \[\text{A=}\left| \begin{matrix} \text{3} & \text{-1} & \text{-2} \\ \text{0} & \text{0} & \text{-1} \\ \text{3} & \text{-5} & \text{0} \\ \end{matrix} \right|\] Determining the value of $\text{A}$ by expanding along the second row, we have: \[\Rightarrow \left| \text{A} \right|\text{=}-0\left| \begin{matrix} -1 & -2 \\ -5 & 0 \\ \end{matrix} \right|+0\left| \begin{matrix} 3 & -2 \\ 3 & 0 \\ \end{matrix} \right|-\left( -1 \right)\left| \begin{matrix} 3 & -1 \\ 3 & -5 \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=}\left( \text{-15+3} \right)\] \[\therefore \left| \text{A} \right|\text{=-12}\]


ii.\[\left| \begin{matrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \\ \end{matrix} \right|\]

Ans: Let \[\text{A=}\left| \begin{matrix} \text{3} & \text{-4} & \text{5} \\ \text{1} & \text{1} & \text{-2} \\ \text{2} & \text{3} & \text{1} \\ \end{matrix} \right|\] Determining the value of $\text{A}$ by expanding along the first row, we have: \[\Rightarrow \left| \text{A} \right|\text{=3}\left| \begin{matrix} \text{1} & \text{-2} \\ \text{3} & \text{1} \\ \end{matrix} \right|\text{+4}\left| \begin{matrix} \text{1} & \text{-2} \\ \text{2} & \text{1} \\ \end{matrix} \right|\text{+5}\left| \begin{matrix} \text{1} & \text{1} \\ \text{2} & \text{3} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=3}\left( \text{1+6} \right)\text{+4}\left( \text{1+4} \right)\text{+5}\left( \text{3-2} \right)\] \[\Rightarrow \left| \text{A} \right|\text{=21+20+5}\] \[\therefore \left| \text{A} \right|\text{=}46\]

iii. \[\left| \begin{matrix} \text{0} & \text{1} & \text{2} \\ \text{-1} & \text{0} & \text{-3} \\ \text{-2} & \text{3} & \text{0} \\ \end{matrix} \right|\]

Ans: Let \[\text{A=}\left| \begin{matrix} \text{0} & \text{1} & \text{2} \\ \text{-1} & \text{0} & \text{-3} \\ \text{-2} & \text{3} & \text{0} \\ \end{matrix} \right|\] Determining the value of $\text{A}$ by expanding along the first row, we have: \[\Rightarrow \left| \text{A} \right|\text{=0}\left| \begin{matrix} \text{0} & \text{-3} \\ \text{3} & \text{0} \\ \end{matrix} \right|\text{-1}\left| \begin{matrix} \text{-1} & \text{-3} \\ \text{-2} & \text{0} \\ \end{matrix} \right|\text{+2}\left| \begin{matrix} \text{-1} & \text{0} \\ \text{-2} & \text{3} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=0}\left( 9 \right)-\left( -6 \right)+2\left( -3 \right)\] \[\therefore \left| \text{A} \right|\text{=0}\]

iv. $\left| \begin{matrix} \text{2} & \text{-1} & \text{-2} \\ \text{0} & \text{2} & \text{-1} \\ \text{3} & \text{-5} & \text{0} \\ \end{matrix} \right|$

Ans: Let $\text{A=}\left| \begin{matrix} \text{2} & \text{-1} & \text{-2} \\ \text{0} & \text{2} & \text{-1} \\ \text{3} & \text{-5} & \text{0} \\ \end{matrix} \right|$ Determining the value of $\text{A}$ by expanding along the first column, we have: \[\Rightarrow \left| \text{A} \right|\text{=2}\left| \begin{matrix} \text{2} & \text{-1} \\ \text{-5} & \text{0} \\ \end{matrix} \right|\text{-0}\left| \begin{matrix} \text{-1} & \text{-2} \\ \text{-5} & \text{0} \\ \end{matrix} \right|\text{+3}\left| \begin{matrix} \text{-1} & \text{-2} \\ \text{2} & \text{-1} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=}2\left( -5 \right)-0+3\left( 5 \right)\] \[\Rightarrow \left| \text{A} \right|\text{=}-\text{10+15}\] \[\therefore \left| \text{A} \right|\text{=5}\]

6. If \[\text{A=}\left[ \begin{matrix} 1 & 1 & -2  \\   2 & 1 & -3  \\ 5 & 4 & -9  \\ \end{matrix} \right]\], find \[\left| \text{A} \right|\].

Ans: Given,\[\text{A=}\left[ \begin{matrix} \text{1} & \text{1} & \text{-2} \\ \text{2} & \text{1} & \text{-3} \\ \text{5} & \text{4} & \text{-9} \\ \end{matrix} \right]\] Determining the value of $\text{A}$ by expanding along the first row, we have: \[\Rightarrow \left| \text{A} \right|\text{=1}\left| \begin{matrix} \text{1} & \text{-3} \\ \text{4} & \text{-9} \\ \end{matrix} \right|\text{-1}\left| \begin{matrix} \text{2} & \text{-3} \\ \text{5} & \text{-9} \\ \end{matrix} \right|\text{-2}\left| \begin{matrix} \text{2} & \text{1} \\ \text{5} & \text{4} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=}1\left( -9+12 \right)-1\left( -18+15 \right)-2\left( 8-5 \right)\] \[\Rightarrow \left| \text{A} \right|\text{=}3+3-6\] \[\therefore \left| \text{A} \right|\text{=}0\]

7. Find values of \[x\] , if

i. \[\left| \begin{matrix} \text{2} & \text{4} \\ \text{5} & \text{1} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{2x} & \text{4} \\ \text{6} & \text{x} \\ \end{matrix} \right|\] Ans: Given, \[\left| \begin{matrix} \text{2} & \text{4} \\ \text{5} & \text{1} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{2x} & \text{4} \\ \text{6} & \text{x} \\ \end{matrix} \right|\] Solving it, we have: \[\Rightarrow \left( 2\times 1 \right)-\left( 5\times 4 \right)=\left( 2x\times x \right)-\left( 6\times 4 \right)\] \[\Rightarrow 2-20=2{{x}^{2}}-24\] \[\Rightarrow -18+24=2{{x}^{2}}\] \[\Rightarrow 3={{x}^{2}}\] Applying square root on both the sides, we obtain: \[\Rightarrow \text{x = }\!\!\pm\!\!\text{ }\sqrt{\text{3}}\] ii. \[\left| \begin{matrix} \text{2} & \text{3} \\ \text{4} & \text{5} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{x} & \text{3} \\ \text{2x} & \text{5} \\ \end{matrix} \right|\] Ans: Given, \[\left| \begin{matrix} \text{2} & \text{3} \\ \text{4} & \text{5} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{x} & \text{3} \\ \text{2x} & \text{5} \\ \end{matrix} \right|\] Solving it, we have: \[\Rightarrow \left( \text{2 }\!\!\times\!\!\text{ 5} \right)-\left( \text{3 }\!\!\times\!\!\text{ 4} \right)\text{=}\left( \text{x }\!\!\times\!\!\text{ 5} \right)-\left( \text{3 }\!\!\times\!\!\text{ 2x} \right)\] \[\Rightarrow \text{10}-\text{12=5x}-\text{6x}\] \[\Rightarrow -\text{2=}-\text{x}\] Multiplying by $\left( -1 \right)$ on both the sides, we obtain: \[\Rightarrow \text{x = 2}\]

8. If \[\left| \begin{matrix} x & 2  \\ 18 & x  \\ \end{matrix} \right|\text{=}\left| \begin{matrix} 6 & 2 \\  18 & 6  \\ \end{matrix} \right|\], then \[x\] is equal to

  1. \[\text{6}\]

  2. \[\text{ }\!\!\pm\!\!\text{ 6}\]

  3. \[\text{-6}\]

  4. \[\text{0}\]

Ans: Given,\[\left| \begin{matrix} \text{x} & \text{2} \\ \text{18} & \text{x} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{6} & \text{2} \\ \text{18} & \text{6} \\ \end{matrix} \right|\] Solving it, we have: \[\Rightarrow {{\text{x}}^{\text{2}}}-\text{36 = 36}-\text{36}\] \[\Rightarrow {{\text{x}}^{\text{2}}}-\text{36=0}\] \[\Rightarrow {{\text{x}}^{\text{2}}}\text{=36}\] Applying square root on both the sides, we obtain: \[\Rightarrow \text{x= }\!\!\pm\!\!\text{ 6}\] Hence, B. \[\text{ }\!\!\pm\!\!\text{ 6}\] is the correct answer.



Conclusion

Vedantu's NCERT Solutions for Class 12 Maths Chapter 4 - Determinants, Exercise 4.1, provides a complete understanding of determinants and their properties. It's important to focus on the basic concepts and methods of calculating determinants, as these are fundamental for solving more complex problems. Practice each question thoroughly to build a strong foundation. Pay special attention to the different types of determinant problems to ensure you're well-prepared for the exams.


Class 12 Maths Chapter 4: Exercises Breakdown

S.No.

Chapter 4 - Determinants Exercises in PDF Format

1

Class 12 Maths Chapter 4 Exercise 4.2 - 10 Questions & Solutions (4 Short Answers, 10 Long Answers)

2

Class 12 Maths Chapter 4 Exercise 4.3 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)

3

Class 12 Maths Chapter 4 Exercise 4.4 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)

4

Class 12 Maths Chapter 4 Exercise 4.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers)



CBSE Class 12 Maths Chapter 4 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner
Best Seller - Grade 12 - JEE
View More>
Previous
Next

FAQs on NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

1. What are the key steps to solve determinant problems in Class 12 Maths Chapter 4 using NCERT Solutions?

To solve determinant problems in Chapter 4, follow these steps:

  • Identify the type of determinant (2x2 or 3x3 matrix).
  • Apply the relevant determinant formula as outlined in the NCERT textbook.
  • Expand the determinant using the correct row or column, as per the problem’s instruction.
  • Calculate minors and cofactors where needed.
  • Simplify expressions systematically to avoid calculation errors.

2. How do NCERT Solutions for Class 12 Maths Chapter 4 ensure clarity in stepwise calculations?

NCERT Solutions present each calculation in a stepwise format by breaking down complex problems into smaller, logical steps. Each step includes justification and application of the correct property or formula, which helps students clearly understand the process and reasoning, reducing the chance of mistakes during board exams.

3. Why is it essential to practice every question in Exercise 4.1 for exam preparation?

Practicing all questions in Exercise 4.1 is important because:

  • Each question introduces a unique type or property of determinants.
  • It highlights possible variations asked in board exams.
  • Repetition strengthens conceptual understanding and error-spotting abilities.
  • It prepares you for higher-order problems found later in the chapter.

4. Which properties of determinants are most frequently used in Class 12 Maths NCERT Solutions?

The most frequently used properties are:

  • Linear property of determinants
  • Interchanging rows/columns and its sign effect
  • Multiplying a row or column by a scalar
  • Using minors and cofactors
  • Zero determinant for identical rows or columns
Applying these properties simplifies complex calculations and is essential for proving relations in NCERT problems.

5. What common errors should students avoid when solving determinant questions in Chapter 4?

Students should watch out for:

  • Sign errors while expanding determinants
  • Incorrectly identifying the elements for calculation of minors and cofactors
  • Forgetting the effect of row/column swaps on the determinant's sign
  • Missing the application of properties in proofs or simplifications
Regular use of stepwise NCERT Solutions helps minimise these mistakes.

6. How can the concept of determinants in this chapter be applied to solve real-world problems?

Determinants are used in solving systems of linear equations, calculating the area of geometric shapes, and checking if a matrix is invertible. These concepts have real-world applications in engineering, computer science, and economics where calculations require precise evaluation of linear relationships.

7. In what ways does Vedantu’s NCERT Solutions clarify the reasoning behind each step in determinants questions?

Vedantu's NCERT Solutions include detailed explanations that justify every calculation step, describe why particular properties are applied, and provide tips to approach various question patterns. This helps students build a strong foundation and apply the concepts correctly in exams.

8. What are some exam tips for mastering determinants using NCERT Solutions for Class 12 Maths?

  • Revise all determinant properties before attempting problems.
  • Practice both simple and mixed-type questions to cover all possible variations.
  • Start with 2x2 matrices, then advance to 3x3.
  • Focus on stepwise accuracy—each step should be justified as per CBSE guidelines.
  • Revisit difficult or commonly mistaken questions, using the reasoning shown in the solutions.

9. What should a student do if they get stuck on a complex determinant problem in Exercise 4.1?

If you get stuck:

  • Re-examine the problem’s requirements and identify where you deviated from the correct method.
  • Refer back to the stepwise method in the NCERT Solutions to compare your approach.
  • Break the problem into smaller, manageable steps and solve each part separately.
  • If confusion persists, consult your teacher or discuss with peers for alternative approaches.

10. What deeper understanding does practicing determinants through NCERT Solutions develop for higher studies?

Practicing determinants in a structured, stepwise manner enhances critical problem-solving skills, logical reasoning, and familiarity with mathematical proof techniques. This foundation is crucial for advanced mathematics, engineering, data analysis, and research fields where complex matrix operations are common.