Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Maths Chapter 4 Determinants – NCERT Solutions 2025–26

ffImage
banner

Download Exercise 4.2 NCERT Solutions PDF for Class 12 Maths Determinants

Exercise 4.2 Class 12 Maths Solutions Chapter 4, equips you to conquer determinant problems related to area. Determinants, often encountered in linear algebra, can be surprisingly useful in geometry, particularly when calculating the area of a triangle.  While traditional formulas based on base and height or Heron's formula work well, determinants offer an alternative and sometimes more efficient approach.

toc-symbolTable of Content
toggle-arrow


In class 12 maths ex 4.2 solutions, we will focus on the questions based on areas of triangles, and sharpen your problem-solving skills with step-by-step guidance. Access the NCERT Solutions for Class 12 Maths here.


Glance on NCERT Solutions Maths Chapter 4 Exercise 4.2 Class 12 | Vedantu

  • Exercise 4.2 of Chapter 4 in Class 12 Maths focuses on the practical application of determinants to calculate the area of triangles. 

  • Determinants are mathematical tools used to solve systems of linear equations and manipulate matrices. In ex 4.2 class 12 students will likely explore how a determinant can be used to represent the area of a triangle based on its vertices' coordinates.

  • Imagine a triangle with vertices A(x1, y1), B(x2, y2), and C(x3, y3). These coordinates represent the x and y positions of each vertex on a graph.

  • There are 5 questions in Exercise 4.2  Maths Class 12 Chapter 4 which experts at Vedantu fully solve.


Formulas Used in Class 12 Chapter 4 Exercise 4.2

  • Area = ½ | (x1 * y2 + x2 * y3 + x3 * y1) - (x2 * y1 + x3 * y2 + x1 * y3) |

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 12 Chapter 4 - Determinants

Exercise 4.2

1. Find the area of the triangle with vertices at the point given in each of the following:

i. \[\left( \text{1,0} \right)\text{,}\left( \text{6,0} \right)\text{,}\left( \text{4,3} \right)\]

Ans: Given vertices,\[\left( \text{1,0} \right)\text{,}\left( \text{6,0} \right)\text{,}\left( \text{4,3} \right)\]

Thus, the area of the triangle is given by,

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left| \begin{matrix}   \text{1} & \text{0} & \text{1}  \\   \text{6} & \text{0} & \text{1}  \\   \text{4} & \text{3} & \text{1}  \\ \end{matrix} \right|\]

\[\Rightarrow \Delta =\dfrac{\text{1}}{\text{2}}\left[ \text{1}\left( \text{0-3} \right)\text{-0}\left( \text{6-4} \right)\text{+1}\left( \text{18-0} \right) \right]\]

\[\Rightarrow \Delta \text{=}\dfrac{\text{1}}{\text{2}}\left[ \text{-3+18} \right]\]

\[\Rightarrow \Delta \text{=}\dfrac{\text{15}}{\text{2}}\] square units

$\therefore $Area of the triangle with vertices \[\left( \text{1,0} \right)\text{,}\left( \text{6,0} \right)\text{,}\left( \text{4,3} \right)\] is \[\dfrac{\text{15}}{\text{2}}\] square units.


ii. \[\left( \text{2,7} \right)\text{,}\left( \text{1,1} \right)\text{,}\left( \text{10,8} \right)\]

Ans: Given vertices,\[\left( \text{2,7} \right)\text{,}\left( \text{1,1} \right)\text{,}\left( \text{10,8} \right)\]

The area of the triangle is given by,

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left| \begin{matrix} \text{2} & \text{7} & \text{1}  \\  \text{1} & \text{1} & \text{1}  \\   \text{10} & \text{8} & \text{1}  \\ \end{matrix} \right|\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left[ \text{2}\left( \text{1-8} \right)\text{-7}\left( \text{1-10} \right)\text{+1}\left( \text{8-10} \right) \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left[ \text{2}\left( \text{-7} \right)\text{-7}\left( \text{-9} \right)\text{+1}\left( \text{-2} \right) \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left[ \text{-16+63} \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{47}}{\text{2}}\] square units

$\therefore $Area of the triangle with vertices \[\left( \text{2,7} \right)\text{,}\left( \text{1,1} \right)\text{,}\left( \text{10,8} \right)\] is \[\dfrac{47}{\text{2}}\] square units.


iii. \[\text{(-2,-3),}\left( \text{3,2} \right)\text{,(-1,-8)}\]

Ans: Given vertices,\[\text{(-2,-3),}\left( \text{3,2} \right)\text{,(-1,-8)}\]

The area of the triangle with vertices \[\text{(-2,-3),}\left( \text{3,2} \right)\text{,(-1,-8)}\] is given by,

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left| \begin{matrix} \text{-2} & \text{-3} & \text{1}  \\  \text{3} & \text{2} & \text{1}  \\  \text{-1} & \text{-8} & \text{1}  \\ \end{matrix} \right|\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left[ \text{-2}\left( \text{2+8} \right)\text{+3}\left( \text{3+1} \right)\text{+1}\left( \text{-24+2} \right) \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left[ \text{-20+12-22} \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ }=-\dfrac{\text{30}}{\text{2}}\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =-15}\]

$\therefore $The area of the triangle with vertices \[\left( \text{2,7} \right)\text{,}\left( \text{1,1} \right)\text{,}\left( \text{10,8} \right)\]is \[\left| \text{-15} \right|\text{=15}\] square units.


2. Show that points \[\text{A}\left( \text{a,b+c} \right)\text{,B}\left( \text{b,c +a} \right)\text{,C}\left( \text{c,a +b} \right)\] are collinear.

Ans: To show that the points \[\text{A}\left( \text{a,b+c} \right)\text{,B}\left( \text{b,c +a} \right)\text{, C}\left( \text{c, a +b} \right)\] are collinear, the area of the triangle formed by these points as vertices should be zero.

$\therefore $ Area of \[\text{ }\!\!\Delta\!\!\text{ ABC}\] is given by,

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left| \begin{matrix}   \text{a} & \text{b+c} & \text{1}  \\   \text{b} & \text{c+a} & \text{1}  \\   \text{c} & \text{a+b} & \text{1}  \\ \end{matrix} \right|\]

Applying the row operations, \[R_2\to R_2-R_1\] and \[R_3\to R_3-R_1\]

\[\Rightarrow \Delta \text{=}\dfrac{\text{1}}{\text{2}}\left| \begin{matrix}  \text{a} & \text{b+c} & \text{1}  \\ \text{b-a} & \text{a-b} & \text{0}  \\ \text{c-a} & \text{a-c} & \text{0}  \\ \end{matrix} \right|\]

Taking out $\left( a-b \right)$ and $\left( c-a \right)$ common from \[R_2\] and \[R_3\] respectively,

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left( \text{a-b} \right)\left( \text{c-a} \right)\left| \begin{matrix} \text{a} & \text{b+c} & \text{1}  \\ \text{-1} & \text{1} & \text{0}  \\ \text{1} & \text{-1} & \text{0}  \\ \end{matrix} \right|\]

Applying the row operation \[R_3\to R_3\text{+}R_2\]

\[\Rightarrow \Delta \text{=}\dfrac{\text{1}}{\text{2}}\left( \text{a-b} \right)\left( \text{c-a} \right)\left| \begin{matrix} \text{a} & \text{b+c} & \text{1}  \\   \text{-1} & \text{1} & \text{0}  \\  \text{0} & \text{0} & \text{0}  \\ \end{matrix} \right|\]

We know that when all the elements of a row or a column in a determinant are zero then the value of the determinant is always zero.

\[\therefore \Delta \text{=0}\]                                           

Thus, the area of the triangle formed by points \[\text{A}\] , \[\text{B}\] and \[\text{C}\] is zero.

Hence, the points \[\text{A}\left( \text{a,b+c} \right)\text{,B}\left( \text{b,c +a} \right)\text{,C}\left( \text{c,a +b} \right)\] are collinear.


3. Find values of \[\text{k}\] if area of triangle is \[\text{4}\] square units and vertices are:

i. \[\left( \text{k,0} \right)\text{,}\left( \text{4,0} \right)\text{,}\left( \text{0,2} \right)\]

Ans: Given vertices are \[\left( \text{k,0} \right)\text{,}\left( \text{4,0} \right)\text{,}\left( \text{0,2} \right)\].

We know, the area of the triangle is given by,

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left| \begin{matrix}  \text{k} & \text{0} & \text{1}  \\  \text{4} & \text{0} & \text{1}  \\  \text{0} & \text{2} & \text{1}  \\ \end{matrix} \right|\]

\[\Rightarrow \Delta \text{=}\dfrac{\text{1}}{\text{2}}\left[ \text{k}\left( \text{0-2} \right)\text{-0}\left( \text{4-0} \right)\text{+1}\left( \text{8-0} \right) \right]\]

\[\Rightarrow \Delta \text{=}\dfrac{\text{1}}{\text{2}}\left[ \text{-2k+8} \right]\]

\[\therefore \Delta =-k+4\]

Since the area is given to be \[\text{4}\] square units, thus

$-k+4=\pm 4$

When \[-k+4=-4\]

\[\therefore k=8\].

When \[-k+4=4\]

\[\therefore k=0\].

Hence, \[\text{k=0,8}\].


ii. \[\text{(-2,0),}\left( \text{0,4} \right)\text{,}\left( \text{0,k} \right)\]

Ans: Given vertices are \[\text{(-2,0),}\left( \text{0,4} \right)\text{,}\left( \text{0,k} \right)\].

The area of the triangle is given by,

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left| \begin{matrix}  \text{-2} & \text{0} & \text{1}  \\  \text{0} & \text{4} & \text{1}  \\  \text{0} & \text{k} & \text{1}  \\ \end{matrix} \right|\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left[ -2\left( 4-k \right) \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ }=k-4\]

Since the area is given to be \[\text{4}\] square units, thus

\[k-4=\pm 4\]

When \[k-4=-4\]

\[\therefore k=0\].

When \[k-4=4\]

\[\therefore k=8\].

Hence, \[k=0,8\].


4. Determine the following:

i. Find the equation of line joining \[\left( \text{1,2} \right)\] and \[\left( \text{3,6} \right)\] using determinants.

Ans: Let us assume a point, \[\text{P}\left( \text{x, y} \right)\] on the line joining points \[\text{A}\left( \text{1,2} \right)\] and \[\text{B}\left( \text{3,6} \right)\] .

Then, the points \[\text{A}\],$B$ and $P$ are collinear.

Thus, the area of the triangle \[\text{ABP}\] will be zero.

\[\therefore \dfrac{\text{1}}{\text{2}}\left| \begin{matrix}  \text{1} & \text{2} & \text{1}  \\ \text{3} & \text{6} & \text{1}  \\  \text{x} & \text{y} & \text{1}  \\ \end{matrix} \right|\text{=0}\]

\[\Rightarrow \dfrac{\text{1}}{\text{2}}\left[ \text{1}\left( \text{6-y} \right)\text{-2}\left( \text{3-x} \right)\text{+1}\left( \text{3y-6x} \right) \right]\text{=0}\]

\[\Rightarrow \text{6-y-6+2x+3y-6x=0}\]

\[\Rightarrow \text{2y-4x=0}\]

\[\Rightarrow \text{y=2x}\]

$\therefore $ The equation of the line joining the given points is \[y=2x\].


ii. Find the equation of line joining \[\left( \text{3,1} \right)\] and \[\left( \text{9,3} \right)\] using determinants.

Ans: Let us assume a point, \[\text{P}\left( \text{x, y} \right)\] on the line joining points \[\text{A}\left( \text{3,1} \right)\] and \[\text{B}\left( \text{9,3} \right)\]. 

Then, the points \[\text{A}\],$B$ and $P$ are collinear.

Thus, the area of the triangle \[\text{ABP}\] will be zero.

\[\therefore \dfrac{\text{1}}{\text{2}}\left| \begin{matrix}   \text{3} & \text{1} & \text{1}  \\   \text{9} & \text{3} & \text{1}  \\   \text{x} & \text{y} & \text{1}  \\ \end{matrix} \right|\text{=0}\]

\[\Rightarrow \dfrac{\text{1}}{\text{2}}\left[ \text{3}\left( \text{3-y} \right)\text{-1}\left( \text{9-x} \right)\text{+1}\left( \text{9y-3x} \right) \right]\text{=0}\]

\[\Rightarrow \text{9-3y-9+x+9y-3x=0}\]

\[\Rightarrow \text{6y-2x=0}\]

\[\Rightarrow \text{x-3y=0}\]

$\therefore $ The equation of the line joining the given points is \[\text{x-3y=0}\] .


5. If the area of triangle is \[\text{35}\] square units with vertices \[\text{(2,-6)}\] , \[\left( \text{5,4} \right)\] and \[\left( \text{k,4} \right)\] . Then \[\text{k}\] is

  1. \[\text{12}\]

  2. \[\text{-2}\]

  3. \[\text{-12,-2}\]

  4. \[\text{12,-2}\]

Ans: Given vertices, \[\text{(2,-6)}\],\[\left( \text{5,4} \right)\] and \[\left( \text{k,4} \right)\]

The area of the triangle is given by,

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left| \begin{matrix}   \text{2} & \text{-6} & \text{1}  \\   \text{5} & \text{4} & \text{1}  \\   \text{k} & \text{4} & \text{1}  \\ \end{matrix} \right|\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left[ \text{2}\left( \text{4-4} \right)\text{+6}\left( \text{5-k} \right)\text{+1}\left( \text{20-4k} \right) \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =}\dfrac{\text{1}}{\text{2}}\left[ \text{50-10k} \right]\]

\[\Rightarrow \text{ }\!\!\Delta\!\!\text{ =25-5k}\]

Given, the area of the triangle is \[\text{35}\] square units.

Thus, we have:

\[\Rightarrow 25-5k=\pm 35\]

\[\Rightarrow 5\left( 5-k \right)=\pm 35\]

\[\Rightarrow 5-k=\pm 7\].

When \[5-k=7\]

\[\therefore k=-2\].

When \[5-k=-7\]

\[\therefore k=12\].

Hence, \[k=12,-2\] .

Thus, D. \[12,-2\] is the correct option.

Conclusion

The Class 12 Maths Chapter 4 Exercise 4.2 Solutions is pivotal for understanding the practical application of determinants in calculating the area of triangles. This exercise not only reinforces the theoretical knowledge of determinants but also highlights their significance in solving real-world geometric problems.


In previous years, questions from Class 12 Ex 4.2 have been prominent in exams, typically asking students to calculate the area of a triangle using given vertex coordinates. These questions often test the application of the determinant formula and the verification of results using determinant properties.


Class 12 Maths Chapter 4: Exercises Breakdown

S.No.

Chapter 4 - Determinants Exercises in PDF Format

1

Class 12 Maths Chapter 4 Exercise 4.1 - 8 Questions & Solutions (3 Short Answers, 5 Long Answers)

2

Class 12 Maths Chapter 4 Exercise 4.3 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)

3

Class 12 Maths Chapter 4 Exercise 4.4 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)

4

Class 12 Maths Chapter 4 Exercise 4.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers)



CBSE Class 12 Maths Chapter 4 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner
Best Seller - Grade 12 - JEE
View More>
Previous
Next

FAQs on CBSE Class 12 Maths Chapter 4 Determinants – NCERT Solutions 2025–26

1. What is the correct step-by-step method to find the area of a triangle using determinants as per NCERT Solutions for Class 12 Maths Chapter 4?

The standard method involves placing the coordinates of the triangle's three vertices into a 3×3 matrix, then applying the determinant formula: Area = ½ | x₁(y₂ – y₃) + x₂(y₃ – y₁) + x₃(y₁ – y₂) |. The calculated value is always taken as a positive number to represent area accurately.

2. How do NCERT Solutions demonstrate solving for an unknown value like 'k' in determinant-based area problems?

They set up the determinant formula with the given vertices, incorporate the unknown 'k', and equate the expression's modulus to the given area. The resulting equation is solved for 'k', showing all mathematically valid solutions (both positive and negative values).

3. Why is the modulus applied when calculating the area of a triangle using determinants in NCERT Solutions?

The modulus ensures the area is non-negative, as swapping vertex order can produce a negative determinant. Area is always a positive quantity, and using modulus in the NCERT Solutions prevents sign errors in answers for board exams.

4. What is the process to verify if three points are collinear using determinants according to the Class 12 syllabus?

By substituting the coordinates into the area determinant formula, calculate the triangle's area. If the result is zero, all three points are collinear, as no triangle is formed. This approach is clearly laid out in NCERT Solutions exercises.

5. What are common mistakes students make while using determinants for area calculations in NCERT Solutions?

  • Neglecting the modulus sign, resulting in negative area values
  • Incorrect substitution of coordinates into the matrix
  • Misapplying the calculation order or forgetting necessary steps
  • Errors during expansion of the determinant due to sign confusion
Careful attention to stepwise solving, as demonstrated in NCERT Solutions, helps avoid these mistakes in exams.

6. How do NCERT Solutions for Class 12 Maths Chapter 4 handle questions involving equations of lines formed by two points?

They use the property that three collinear points (including an arbitrary (x, y) on the line) will form a triangle with zero area when placed in the determinant. Expanding the determinant and equating to zero yields the equation of the straight line joining the two points, as shown in the provided solutions.

7. How are row and column operations used to simplify determinants in the NCERT Solutions for this chapter?

NCERT Solutions illustrate step-by-step row and column operations to create zeros in a row or column before expansion. This makes the computation easier and avoids calculation errors, supporting efficient problem solving as per CBSE 2025–26 requirements.

8. How does regular practice of NCERT Solutions for Chapter 4 Determinants improve performance in CBSE board exams?

Regular practice builds familiarity with a variety of problem types, improves error-checking abilities, reinforces the standard CBSE stepwise approach, and enhances confidence. This targeted practice leads to higher accuracy and better marks in determinant application questions.

9. What is the significance of linking both geometric and algebraic interpretations of determinants in the NCERT curriculum?

Understanding geometric interpretations, like area and collinearity, alongside algebraic operations on determinants, deepens conceptual clarity. This dual understanding equips students to solve board-level problems and aligns with higher-order thinking targeted by the CBSE curriculum.

10. In what ways are the NCERT Solutions for Class 12 Maths Chapter 4 structured to help students follow CBSE's marking scheme?

Each solution is structured in a stepwise manner, clearly showing all intermediate working steps. This transparency aligns with the CBSE marking scheme by awarding marks for method, not just the final answer, and ensures full credit for well-presented solutions.