Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.3

ffImage
banner

NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.3 - FREE PDF Download

NCERT Solutions for Class 12 Maths Chapter 5 Ex 5.3 by Vedantu, is crucial for understanding how functions behave, how they change, and how they can be manipulated using calculus. Exercise 5.3 focuses on the concepts of differentiability and provides a variety of problems that help reinforce your understanding of this topic. By working through these solutions, you’ll gain confidence in tackling different differentiation problems, which is essential for success in board exams and competitive exams like JEE. Vedantu’s step-by-step solutions are designed to make learning easy and effective.

toc-symbolTable of Content
toggle-arrow


Glance on NCERT Solutions Maths Chapter 5 Exercise 5.3 Class 12 | Vedantu

  • Product and Quotient rules help to differentiate a function that is multiplied or divided by each other.

  • The chain rule is used to break complex functions into simple parts to find their derivatives.

  • Higher order derivatives are the second, third, or further derivatives of a function. In simple words, it is differentiating a function multiple times results in higher order derivatives.  

  • Derivatives of implicit functions is the process of differentiating an implicit equation with respect to the desired variable x while treating the other variables as unspecified functions of x.

  • Derivatives of inverse trigonometric functions are the process of finding angles for the given trigonometric value.

  • Ex 5.3 Class 12 has 15 fully solved questions for Chapter 5 Continuity and Differentiability.


Topics Covered in Class 12 Maths Chapter 5 Exercise 5.3

  1. Derivatives of Implicit functions

  2. Derivatives of Inverse trigonometric functions

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access PDF for Maths NCERT Chapter 5 Continuity and Differentiability Exercise 5.3 Class 12

1. Find  $ \frac{dy}{dx}:2x+3y=\sin x $ 

Ans: The given relationship is  $ 2x+3y=\sin x $  

Differentiating the above relationship with respect to $ x $ , 

We get

  $ \Rightarrow \text{  } $  $ \frac{d}{dy}(2x+3y)=\frac{d}{dx}(\sin x) $ 

 $ \Rightarrow     \frac{d}{dx}(2x)+\frac{d}{dx}(3y)=\cos x $ 

 $ \Rightarrow     2+3\frac{dy}{dx}=\cos x $ 

 $ \Rightarrow 3\frac{dy}{dx}=\cos x-2 $ 

 $ \therefore \frac{dx}{dy}=\frac{\cos x-2}{3} $ 


2. Find  $ \frac{dy}{dx}:2x+3y=\sin y $ 

Ans: The given relationship is  $ 2x+3y=\sin y $  

Differentiating the above relationship with respect to $ x $ , We obtain

 $ \Rightarrow \text{  } $   $ \frac{d}{dx}(2x)+\frac{d}{dx}(3y)=\frac{d}{dx}(\sin y) $ 

 $ \Rightarrow 2+3\frac{dy}{dx}=\cos y\frac{dy}{dx}\quad [ $  By using chain rule]

 $ \Rightarrow 2=(cosy $  $ -3)\frac{dy}{dx} $ 

 $ \therefore \frac{dy}{dx}=\frac{2}{\cos y-3} $ 


3. Find  $ \frac{dy}{dx}:ax+b{{y}^{2}}=\cos y $ 

Ans: The given relationship is $ ax+b{{y}^{2}}=\cos y $ .

Differentiating the above relationship with respect to $ x $ , we obtain

 $ \Rightarrow \text{  } $  $ \frac{d}{dx}(\alpha x)+\frac{d}{dx}\left( b{{y}^{2}} \right)=\frac{d}{dx}(\cos y) $ 

 $ \Rightarrow a+b\frac{d}{dx}\left( {{y}^{2}} \right)=\frac{d}{dx}(\cos y) $ 

 $ \frac{d}{dx}\left( {{y}^{2}} \right)=2y\frac{dy}{dx} $  and  $ \frac{d}{dx}(\cos y)=-\sin y\frac{dy}{dx} $ 

Using the chain rule, 

We get,

  $ \Rightarrow \text{  } $  $ a+b\times 2y\frac{dy}{dx}=-\sin y\frac{dy}{dx} $ 

 $ \Rightarrow (2by+\sin y)\frac{dy}{dx}=-a $ 

 $ \therefore \frac{dy}{dx}=\frac{-a}{2by+\sin y} $ 


4. Find  $ \frac{dy}{dx}:xy+{{y}^{2}}=\tan x+y $ 

Ans:  The given relationship is  $ xy+{{y}^{2}}=\tan x+y $ 

 Differentiating the above relationship with respect to $ x $ , We obtain

  $ \Rightarrow \text{  } $  $ \frac{d}{dx}\left( xy+{{y}^{2}} \right)=\frac{d}{dx}(\tan x+y) $ 

 $ \Rightarrow \frac{d}{dx}(xy)+\frac{d}{dx}\left( {{y}^{2}} \right)=\frac{d}{dx}(\tan x)+\frac{dy}{dx} $ 

 $ \Rightarrow \left[ y\cdot \frac{d}{dx}(x)+x\cdot \frac{dy}{dx} \right]+2y\frac{dy}{dx}={{\sec }^{2}}x+\frac{dy}{dx}\quad  $  [Using product rule and chain rule]

 $ \Rightarrow y\cdot 1+x\frac{dy}{dx}+2y\frac{dy}{dx}={{\sec }^{2}}x+\frac{dy}{dx} $ 

 $ \Rightarrow (x+2y-1)\frac{dy}{dx}={{\sec }^{2}}x-y $ 

 $ \therefore \frac{dy}{dx}=\frac{{{\sec }^{2}}x-y}{(x+2y-1)} $ 


5. Find  $ \frac{dy}{dx}:{{x}^{2}}+xy+{{y}^{2}}=100 $ 

Ans:  The given relationship is $ {{x}^{2}}+xy+{{y}^{2}}=100 $ .

Differentiating the above relationship with respect to $ x $ , We obtain

 $ \Rightarrow \text{  } $   $ \frac{d}{dx}\left( {{x}^{2}}+xy+{{y}^{2}} \right)=\frac{d}{dx}(100) $                   Derivative of the constant function is  0 

 $ \Rightarrow \frac{d}{dx}\left( {{x}^{2}} \right)+\frac{d}{dx}(xy)+\frac{d}{dx}\left( {{y}^{2}} \right)=0 $ 

 $ \Rightarrow 2x+\left[ y\cdot \frac{d}{dx}(x)+x\cdot \frac{dy}{dx} \right]+2y\frac{dy}{dx}=0 $   Using product rule and chain rule

 $ \Rightarrow 2x+y.1+x\cdot \frac{dy}{dx}+2y\frac{dy}{dx}=0 $ 

 $ \Rightarrow 2x+y+(x+2y)\frac{dy}{dx}=0 $ 

 $ \therefore \frac{dy}{dx}=-\frac{2x+y}{x+2y} $ 


6. Find  $ \frac{dy}{dx}:{{x}^{3}}+{{x}^{2}}y+x{{y}^{2}}+{{y}^{3}}=81 $ 

Ans: The given relationship is  $ {{x}^{3}}+{{x}^{2}}y+x{{y}^{2}}+{{y}^{3}}=81 $  .

Differentiating the above relationship with respect to  $ x $ , 

We get,

 $ \Rightarrow \text{  } $   $ \frac{d}{dx}\left( {{x}^{3}}+{{x}^{2}}y+x{{y}^{2}}+{{y}^{3}} \right)=\frac{d}{dx}(81) $ 

 $ \Rightarrow \frac{d}{dx}\left( {{x}^{3}} \right)+\frac{d}{dx}\left( {{x}^{2}}y \right)+\frac{d}{dx}{x{y}^{2}}+\frac{d}{dx}\left( {{y}^{3}} \right)=0 $ 

 $ \Rightarrow 3{{x}^{2}}+\left[ y\frac{d}{dx}\left( {{x}^{2}} \right)+{{x}^{2}}\frac{dy}{dx} \right]+\left[ {{y}^{2}}\frac{d}{dx}(x)+x\frac{d}{dx}\left( {{y}^{2}} \right) \right]+3{{y}^{2}}\frac{dy}{dx}=0 $ 

 $ \Rightarrow 3{{x}^{2}}+\left[ y\cdot 2x+{{x}^{2}}\frac{dy}{dx} \right]+\left[ {{y}^{2}}\cdot 1+x\cdot 2y\cdot \frac{dy}{dx} \right]+3{{y}^{2}}\frac{dy}{dx}=0 $ 

 $ \Rightarrow \left( {{x}^{2}}+2xy+3{{y}^{2}} \right)\frac{dy}{dx}+\left( 3{{x}^{2}}+2xy+{{y}^{2}} \right)=0 $ 

 $ \therefore \frac{dy}{dx}=\frac{-\left( 3{{x}^{2}}+2xy+{{y}^{2}} \right)}{\left( {{x}^{2}}+2xy+3{{y}^{2}} \right)} $ 


7. Find  $ \frac{dx}{dy}:{{\sin }^{2}}y+\cos xy=k $ 

Ans:   The given relationship is  $ {{\sin }^{2}}y+\cos xy=k  $ 

Differentiating the above relationship with respect to $ x $ , 

We get,

 $ \Rightarrow \text{  } $   $ \frac{d}{dx}\left( {{\sin }^{2}}y+\cos xy \right)=\frac{d}{dx}(k ) $ 

 $ \Rightarrow \frac{d}{dx}\left( {{\sin }^{2}}y \right)+\frac{d}{dx}(\cos xy)=0 $ 

Using the chain rule, 

We get  $ \frac{d}{dx}\left( {{\sin }^{2}}y \right)=2\sin y\frac{d}{dx}(\sin y)=2\sin y\cos y\frac{dy}{dx} $ 

 $ \frac{d}{dx}(\cos xy)=-\sin xy\frac{d}{dx}(xy)=-\sin xy\left[ y\frac{d}{dx}(x)+x\frac{dy}{dx} \right] $ 

 $ =-\sin xy\left[ y\cdot 1+x\frac{dy}{dx} \right]=-y\sin xy-x\sin xy\frac{dy}{dx} $ 

From the above equations we get  $ 2\sin y\cos y\frac{dy}{dx}-y\sin xy-x\sin xy\frac{dy}{dx}=0 $ 

 $ \Rightarrow (2\sin y\cos y-x\sin xy)\frac{dy}{dx}=y\sin xy $ 

 $ \Rightarrow (\sin 2y-x\sin xy)\frac{dx}{dy}=y\sin xy $ 

 $ \frac{dx}{dy}=\frac{y\sin xy}{\sin 2y-x\sin xy} $ 


8. Find  $ \frac{dy}{dx}={{\sin }^{2}}x+{{\cos }^{2}}y=1 $ 

Ans:  The given relationship is  $ {{\sin }^{2}}x+{{\cos }^{2}}y=1 $ 

Differentiating the above relationship with respect to  $ x $ ,

 We get  $ \frac{dy}{dx}\left( {{\sin }^{2}}x+{{\cos }^{2}}y \right)=\frac{d}{dx}(1) $ 

 $ \Rightarrow \frac{d}{dx}\left( {{\sin }^{2}}x \right)+\frac{d}{dx}\left( {{\cos }^{2}}y \right)=0 $ 

 $ \Rightarrow 2\sin x\cdot \frac{d}{dx}(\sin x)+2\cos y\cdot \frac{d}{dx}(\cos y)=0 $ 

 $ \Rightarrow 2\sin x\cos x+2\cos y(-\sin y)\cdot \frac{dy}{dx}=0 $ 

 $ \sin 2x-\sin 2y\frac{dy}{dx}=0 $ 

 $ \frac{dx}{dy}=\frac{\sin 2x}{\sin 2y} $ 


9. Find  $ \frac{dy}{dx}=y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

Ans:  The given relationship is  $ y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow \sin y=\frac{2x}{1+{{x}^{2}}} $ 

Differentiating the above relationship with respect to  $ x $ , 

We get,

 $ \Rightarrow \text{  } $  $ \frac{d}{dx}(\sin y)=\frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow \cos y\frac{dy}{dx}=\frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

The function $ \frac{2x}{1+{{x}^{2}}} $  is of the form of $ \frac{u}{v} $ . Therefore, by quotient rule, we get  $ \frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right)=\frac{\left( 1+{{x}^{2}} \right)\frac{d}{dx}(2x)-2x\cdot \frac{d}{dx}\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}}$

 $ =\frac{\left( 1+{{x}^{2}} \right)\cdot 2-2x[0+2x]}{{{\left( 1+{{x}^{2}} \right)}^{2}}}=\frac{2+2{{x}^{2}}-4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}=\frac{2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

Also,  $ \sin y=\frac{2x}{1+{{x}^{2}}} $ 

 $ \Rightarrow \cos y=\sqrt{1-{{\sin }^{2}}y}=\sqrt{1-{{\left( \frac{2x}{1+{{x}^{2}}} \right)}^{2}}}=\sqrt{\frac{{{\left( 1+{{x}^{2}} \right)}^{2}}-4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}} $ 

 $ =\sqrt{\frac{{{\left( 1-{{x}^{2}} \right)}^{2}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}}=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $ 

From above equations , we get

 $ \Rightarrow \text{  } $   $ \frac{1-{{x}^{2}}}{1+{{x}^{2}}}\times \frac{dy}{dx}=\frac{2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{2}{1+{{x}^{2}}} $ 


10. Find $\dfrac{d y}{d x} \text { in, } y=\tan ^{-1}\left(\dfrac{3 x-x^{3}}{1-3 x^{2}}\right),-\dfrac{1}{\sqrt{3}} < x < \dfrac{1}{\sqrt{3}}$

Ans: $y=\tan ^{-1}\left(\dfrac{3 x-x^{3}}{1-3 x^{2}}\right)$

Putting $\mathrm{x}=\tan \theta$

$y=\tan ^{-1}\left(\dfrac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \\$

$y=\tan ^{-1}(\tan 3 \theta) \quad\left(\tan 3 \theta=\dfrac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \\$

$y=3 \theta$

Differentiating both sides w.r.t. $x$.

$\dfrac{d(y)}{d x}=\dfrac{d 3\left(\tan ^{-1} x\right)}{d x} \\$

$\dfrac{d y}{d x}=3 \dfrac{d\left(\tan ^{-1} x\right)}{d x} \\$

$\dfrac{d y}{d x}=3\left(\dfrac{1}{1+x^{2}}\right) \quad\left(\left(\tan ^{-1} x\right)^{\prime}=\dfrac{1}{1+x^{2}}\right) \\$

$\dfrac{d y}{d x}=\dfrac{3}{1+x^{2}}$


11. Find  $ \frac{dy}{dx}:y={{\cos }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right),0 < x < 1 $ 

Ans: The given relationship is,

 $ y={{\cos }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow \cos y=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $ 

 $ \Rightarrow \frac{1-{{\tan }^{2}}\frac{y}{2}}{1+{{\tan }^{2}}\frac{y}{2}}=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $ 

On comparing L.H.S. and R.H.S. of the above relationship, 

We get 

$ \Rightarrow \text{  } $  $ \tan \frac{y}{2}=x $ 

$ \Rightarrow {\text{\; }}y = 2\left( {{{\tan }^{ - 1}}x} \right)$ 

Differentiating the above relationship with respect to

x, 

We get

$ \Rightarrow {\text{ }}$   $\frac{{dy}}{{dx}} = \frac{{d\left( {2{{\tan }^{ - 1}}x} \right)}}{{dx}}$ 

$ \Rightarrow \frac{{dy}}{{dx}} = 2\frac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}}$ 

$ \Rightarrow \frac{{dy}}{{dx}} = 2\left( {\frac{1}{{1 + {x^2}}}} \right)$ 

$\therefore \frac{{dy}}{{dx}} = \frac{2}{{1 + {x^2}}}$


12. Find  $ \frac{dy}{dx}:y={{\sin }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right),0 < x < 1 $ 

Ans: The given relationship is  $ y={{\sin }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right) $ 

 $ y={{\sin }^{-1}}\left( \frac{1-{{x}^{2}}}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow \sin y=\frac{1-{{x}^{2}}}{1+{{x}^{2}}} $ 

 $ \Rightarrow \left( 1+{{x}^{2}} \right)\sin y=1-{{x}^{2}} $ 

 $ \Rightarrow (1+\sin y){{x}^{2}}=1-\sin y $ 

 $ \Rightarrow {{x}^{2}}=\frac{1-\sin y}{1+\sin y} $ 

 $ \Rightarrow {{x}^{2}}=\frac{{{\left( \cos \frac{y}{2}-\sin \frac{y}{2} \right)}^{2}}}{{{\left( \cos \frac{y}{2}+\sin \frac{y}{x} \right)}^{2}}} $ 

 $ \Rightarrow x=\frac{\cos \frac{y}{2}-\sin \frac{y}{2}}{\cos \frac{y}{2}+\sin \frac{y}{2}} $ 

 $ \Rightarrow x=\frac{1-\tan \frac{y}{2}}{1+\tan \frac{y}{2}} $ 

 $ \Rightarrow x=\tan \left( \frac{\pi }{4}-\frac{\pi }{2} \right) $ 

Differentiating the above relationship with respect to $ x $ , 

We get,

 $ \Rightarrow \text{  } $   $ \frac{d}{dx}(x)=\frac{d}{dx}\left[ \tan \left( \frac{\pi }{4}-\frac{y}{2} \right) \right] $ 

 $ \Rightarrow 1={{\sec }^{2}}\left( \frac{\pi }{4}-\frac{y}{2} \right)\cdot \frac{d}{dt}\left( \frac{\pi }{4}-\frac{y}{2} \right) $ 

 $ \Rightarrow 1=\left[ 1+{{\tan }^{2}}\left( \frac{\pi }{4}-\frac{y}{2} \right)\left( -\frac{1}{2}\frac{dy}{dx} \right) \right. $ 

 $ \Rightarrow 1=\left( 1+{{x}^{2}} \right)\left( -\frac{1}{2}\frac{dy}{dx} \right) $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{-2}{1+{{x}^{2}}} $ 


13. Find  $ \frac{dy}{dx}=y={{\cos }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right),-1 < x < 1 $ 

Ans: The given relationship is 

 $ y={{\cos }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ y={{\cos }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow \cos y=\frac{2x}{1+{{x}^{2}}} $ 

Differentiating the above relationship with respect to $ \text{x} $ , 

We get,

  $ \Rightarrow \text{  } $  $ \frac{d}{dx}(\cos y)=\frac{d}{dx}\left( \frac{2x}{1+{{x}^{2}}} \right) $ 

 $ \Rightarrow -\sin y\frac{dy}{dx}=\frac{\left( 1+{{x}^{2}} \right)\cdot \frac{d}{dx}(2x)-2x\cdot \frac{d}{dt}\left( 1+{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ \Rightarrow -\sqrt{1-{{\cos }^{2}}y}\frac{dy}{dx}=\frac{\left( 1+{{x}^{2}} \right)\times 2- 2x\cdot 2x}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ \Rightarrow \left[ \sqrt{1-{{\left( \frac{2x}{1+{{x}^{2}}} \right)}^{2}}} \right]\frac{dy}{dx}=-\left[ \frac{2{{(1-{{x}^{2}})}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right] $ 

 $ \Rightarrow \sqrt{\frac{{{\left( 1+{{x}^{2}} \right)}^{2}}-4{{x}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}\frac{dy}{dx}=\frac{-2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ =\sqrt{\frac{{{\left( 1-{{x}^{2}} \right)}^{2}}}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}\frac{dy}{dx}=\frac{-2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ \Rightarrow \frac{1-{{x}^{2}}}{1+{{x}^{2}}}\cdot \frac{dy}{dx}=\frac{-2\left( 1-{{x}^{2}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{-2}{1+{{x}^{2}}} $ 


14. Find  $ \frac{dy}{dx}:y={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right),-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} $ 

Ans:  Relationship is  $ y={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right) $ 

 $ y={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right) $ 

 $ \Rightarrow \sin y=2x\sqrt{1-{{x}^{2}}} $ 

Differentiating the above relationship with respect to  $ x $ , we get  $ \cos y \frac{dy}{dx}=2\left[ x\frac{d}{dx}\left( \sqrt{1-{{x}^{2}}} \right)+\sqrt{1-{{x}^{2}}}\frac{dx}{dx} \right] $ 

 $ =\sqrt{1-{{\sin }^{2}}y}\frac{dy}{dx}=2\left[ \frac{x}{2}\cdot \frac{-2x}{\sqrt{1-{{x}^{2}}}}+\sqrt{1-{{x}^{2}}} \right] $ 

 $ =\sqrt{1-{\left( 2x\sqrt{1-{{x}^{2}}}\right)}^{2}}\frac{dy}{dx}=2\left[ \frac{-{{x}^{2}}+1-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $ 

 $ =\sqrt{1-4{{x}^{2}}\left( 1-{{x}^{2}} \right)}\frac{dy}{dx}=2\left[ \frac{1-2{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $ 

 $ =\sqrt{{{(1-2{x}^{2})}^{2}}}\frac{dy}{dx}=2\left[ \frac{1-2{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $ 

 $ =\left( 1-2{{x}^{2}} \right)\frac{dy}{dx}=2\left[ \frac{1-2{{x}^{2}}}{\sqrt{1-{{x}^{2}}}} \right] $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{2}{\sqrt{1-{{x}^{2}}}} $ 


15. Find  $ \frac{dy}{dx}:y={{\sec }^{-1}}\left( \frac{1}{2{{x}^{2}}-1} \right),0 < x < \frac{1}{\sqrt{2}} $ 

Ans:  The given relationship is  $ y={{\sec }^{-1}}\left( \frac{1}{2{{x}^{2}}-1} \right) $ 

 $ y={{\sec }^{-1}}\left( \frac{1}{2{{x}^{2}}-1} \right) $ 

 $ \Rightarrow \sec y=\frac{1}{2{{x}^{2}}-1} $ 

 $ \Rightarrow \cos y=2{{x}^{2}}-1 $ 

 $ \Rightarrow 2{{x}^{2}}=1+\cos y $ 

 $ \Rightarrow 2{{x}^{2}}=2{{\cos }^{2}}\frac{y}{2} $ 

 $ \Rightarrow x=\cos \frac{y}{2} $ 

Differentiating the above relationship with respect to $ x $ , 

We get,

 $ \Rightarrow \text{  } $  $ \frac{d}{dx}(x)=\frac{d}{dx}\left( \cos \frac{y}{2} \right) $ 

 $ \Rightarrow 1=-\sin \frac{y}{2}\cdot \frac{d}{dx}\left( \frac{y}{2} \right) $ 

 $ \Rightarrow \frac{-1}{\sin \frac{y}{2}}=\frac{1}{2}\frac{dy}{dx} $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{-2}{\sin \frac{y}{2}}=\frac{-2}{\sqrt{1-{{\cos }^{2}}\frac{y}{2}}} $ 

 $ \Rightarrow \frac{dy}{dx}=\frac{-2}{\sqrt{1-{{x}^{2}}}} $ 


Conclusion

NCERT Solutions for Class 12 Maths Ex 5.3 Continuity and Differentiability by Vedantu are essential for mastering the concepts of differentiability. This exercise emphasizes understanding and applying various differentiation techniques such as the product rule, quotient rule, chain rule, implicit differentiation, and higher-order derivatives. These skills are crucial for solving complex problems in board exams and competitive exams like JEE. In previous year's question papers, there were around 3-4 questions based on these topics, highlighting their importance in exams. Paying close attention to the detailed solutions provided by Vedantu will help you gain confidence and proficiency in handling a wide range of differentiation problems.


Class 12 Maths Chapter 5: Exercises Breakdown

S.No.

Chapter 5 - Continuity and Differentiability Exercises in PDF Format

1

Class 12 Maths Chapter 5 Exercise 5.1 - 34 Questions & Solutions (10 Short Answers, 24 Long Answers)

2

Class 12 Maths Chapter 5 Exercise 5.2 - 10 Questions & Solutions (2 Short Answers, 8 Long Answers)

3

Class 12 Maths Chapter 5 Exercise 5.4 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers)

4

Class 12 Maths Chapter 5 Exercise 5.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers)

5

Class 12 Maths Chapter 5 Exercise 5.6 - 11 Questions & Solutions (7 Short Answers, 4 Long Answers)

6

Class 12 Maths Chapter 5 Exercise 5.7 - 17 Questions & Solutions (10 Short Answers, 7 Long Answers)

7

Class 12 Maths Chapter 5 Miscellaneous Exercise - 22 Questions & Solutions



CBSE Class 12 Maths Chapter 5 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.3

1. What step-by-step method should be used to solve NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.3 as per CBSE 2025–26 guidelines?

To solve problems in Exercise 5.3 of Chapter 5 Continuity and Differentiability, follow these steps:

  • Step 1: Identify the function type (explicit, implicit, inverse trigonometric, etc.).
  • Step 2: Apply basic differentiation rules, such as the product, quotient, or chain rule, as required by the question.
  • Step 3: For implicit functions, differentiate both sides with respect to x and isolate dy/dx.
  • Step 4: For inverse trigonometric functions, use their derivative formulas while considering domain restrictions.
  • Step 5: Simplify using algebraic manipulation and cross-verification for possible errors.
Following this stepwise approach ensures correct methodology according to CBSE standards.

2. How can you determine whether to use the product, quotient, or chain rule when solving differentiation problems in Exercise 5.3?

To choose the correct differentiation rule:

  • Use the product rule when differentiating the product of two functions.
  • Apply the quotient rule when differentiating the ratio of two functions.
  • Use the chain rule when differentiating a composite function (a function inside another function).
Recognizing the function structure in each question is key to selecting the right method for NCERT solutions.

3. What concepts are reinforced by solving the step-wise NCERT solutions in Class 12 Maths Chapter 5 Exercise 5.3?

By working through Class 12 Maths Chapter 5 Exercise 5.3, students reinforce important concepts including:

  • Differentiability
  • Implicit differentiation
  • Higher-order derivatives
  • Derivatives of inverse trigonometric functions
  • Systematic application of rules (product, quotient, chain)
Mastery of these concepts helps in tackling both board and competitive exam problems effectively.

4. How should common mistakes in differentiating implicit and inverse trigonometric functions be avoided during CBSE exam preparation?

To avoid typical errors:

  • Always apply the chain rule correctly when differentiating expressions involving inverse trigonometric functions or implicit relations.
  • Double-check algebraic manipulations after differentiation.
  • Pay close attention to variable dependencies (e.g., treating y as a function of x).
  • Verify domain and range restrictions for inverse trigonometric derivatives to avoid extraneous solutions.
Careful, stepwise solution writing, as shown in NCERT solutions, helps minimize mistakes.

5. Why are the topics of product rule, quotient rule, and chain rule so important in Class 12 Maths Chapter 5 for the 2025-26 CBSE exam?

These rules form the basis of differentiation, which is essential for solving various question types in board exams. The product, quotient, and chain rules enable students to tackle complex functions systematically. As per the latest CBSE exam trends, direct and application-based questions on these rules often appear, making mastery of their usage crucial for scoring well.

6. What is the recommended approach to complex implicit differentiation problems in NCERT Exercise 5.3?

The recommended approach involves:

  • Writing the given equation with all terms on one side.
  • Differentiating both sides with respect to x, treating y as a function of x (i.e., using dy/dx wherever applicable).
  • Carefully applying product and chain rules as needed.
  • Collecting all terms containing dy/dx on one side, then isolating dy/dx to find the solution.
This systematic, stepwise method matches CBSE guidelines and is emphasized in official NCERT solutions.

7. How can stepwise NCERT solutions help in solving higher-order derivative problems in Class 12 exams?

Stepwise NCERT solutions demonstrate how to differentiate a function multiple times to obtain second, third, or higher-order derivatives. Each step builds on the previous one, clarifying where to apply which differentiation rule and how to simplify at each stage. This clarity is especially valuable for exam questions involving multiple differentiation steps or when higher-order derivatives are required.

8. What is the significance of precise algebraic simplification after differentiation in CBSE Class 12 Maths exams?

Precise algebraic simplification ensures the final answer is accurate and matches required formats in CBSE marking schemes. Errors in simplification can lead to incorrect solutions even if the differentiation process is correct. The NCERT solutions emphasize this step to help students gain all possible marks and meet CBSE standards for full-solution clarity.

9. How can understanding NCERT solutions for derivatives of inverse trigonometric functions benefit students in competitive exams like JEE?

Mastering the differentiation of inverse trigonometric functions using stepwise NCERT methods helps students solve advanced problems in JEE and other competitive exams. These problems require careful application of the chain rule and knowledge of domain/range restrictions. NCERT’s structured solutions build conceptual clarity and speed, both of which are vital for success in time-bound exams.

10. What should students do if they encounter difficulty while solving a particular question in Exercise 5.3 despite following all differentiation rules?

If a question remains unsolved after applying the relevant rules:

  • Revisit each step to check for calculation or conceptual mistakes.
  • Compare the question structure with similar worked examples from NCERT solutions.
  • Break down the function into simpler parts and solve incrementally.
  • Consult class notes or discuss with teachers/peers to clarify doubts.
Persistence and systematic review often reveal the error and lead to the solution.