Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.5

ffImage
banner

NCERT Solutions for Class 12 Chapter 5 Maths Exercise 5.5 - FREE PDF Download

The NCERT Solutions for Chapter 5 Exercise 5.5 Class 12 Maths Continuity and Differentiability provides complete solutions to the problems in the Exercise. These NCERT Solutions are intended to assist students with the CBSE Class 12 board examination. Students should thoroughly study this NCERT solution in order to solve all types of questions based on Relation and Functions. By completing these practice questions with the NCERT Class 12 Maths Solutions Chapter 5 Exercise 5.5 , you will be better prepared to understand all of the different types of questions that may be asked in the Class 12 board exams.

toc-symbolTable of Content
toggle-arrow


Glance for Ex 5.5 Class 12 Maths Chapter 5: Continuity and Differentiability

  • In this article, you will Grasp the connection between continuity and differentiability. A function can only be differentiable at a point if it's continuous at that point.

  • Solidify your understanding of continuity, a property that ensures a function's graph has no "holes" or "jumps" at specific points.

  • Explore the concept of differentiability, a stronger property where a continuous function also has a smooth, well-defined slope at each point in its domain (except maybe for a few exceptional points).

  • Introduce you to logarithmic differentiation, a powerful technique for differentiating functions involving exponential or logarithmic terms.

  • Determine whether a given function is continuous, differentiable, or both at a specific point or within a given interval.


Formula Used

Continuity: A function f(x) is continuous at a point x = c if:

  • lim_(x->c) f(x) exists (limit as x approaches c of f(x) exists)

  • AND lim_(x->c) f(x) = f(c) (the limit equals the function's value at c)


Differentiability:

  • Power Rule: $\dfrac{d}{dx}(x^n)=nx^{n-1}$

  • Sum/Difference Rule: $\dfrac{d}{dx} (f(x) \pm g(x)) = \dfrac{d}{dx} (f(x)) \pm \dfrac{d}{dx} (g(x))$

  • Product Rule: $\dfrac{d}{dx} (f(x) g(x)) = f(x) \dfrac{d}{dx} \left(g(x)) + g(x) \dfrac{d}{dx} (f(x)\right)$

  • Quotient Rule: $\dfrac{d}{dx} \dfrac{f(x)}{g(x)} = \dfrac{g(x) \dfrac{d}{dx} (f(x)) - f(x) \dfrac{d}{dx} (g(x))}{(g(x))^2}$

  • Chain Rule: $\dfrac{d}{dx} f(g(x)) = f^\prime (g(x)) g^\prime(x)$

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access PDF for Maths NCERT Chapter 5 Continuity and Differentiability Exercise 5.5 Class 12

Exercise 5.5

1. Find the derivative of the function $\text{y=cosx }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=cosx }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x}$.

First, taking logarithm both sides of the equation give,

$\text{logy=log(cosx }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x)}$

$\Rightarrow \text{logy=log(cosx)+log(cos2x)+log(cos3x)}$, by the property of logarithm.

Now, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cosx)+}\dfrac{\text{1}}{\text{cos2x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cos2x)+}\dfrac{\text{1}}{\text{cos3x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cos3x)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \text{-}\dfrac{\text{sinx}}{\text{cosx}}\text{-}\dfrac{\text{sin2x}}{\text{cos2x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(2x)-}\dfrac{\text{sin3x}}{\text{cos3x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(3x)} \right] $ 

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=-cos }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x}\left[ \text{tanx+2tan2x+3tan3x} \right]$.

 2. Find the derivative of the function  $\mathbf{y=}\sqrt{\dfrac{\mathbf{(x-1)(x-2)}}{\mathbf{(x-3)(x-4)(x-5)}}}$  with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}\sqrt{\dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}}}$.

First taking logarithm both sides of the equation give

$\text{logy=log}\sqrt{\dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}}} $ 

$\Rightarrow \text{logy=}\dfrac{\text{1}}{\text{2}}\text{log}\left[ \dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}} \right] $ 

$\Rightarrow \text{logy=}\dfrac{\text{1}}{\text{2}}\left[ \text{log }\!\!\{\!\!\text{ (x-1)(x-2) }\!\!\}\!\!\text{ -log }\!\!\{\!\!\text{ (x-3)(x-4)(x-5) }\!\!\}\!\!\text{ } \right] $ 

$\Rightarrow \text{logy=}\dfrac{\text{1}}{\text{2}}\text{ }\!\![\!\!\text{ log(x-1)+log(x-2)-log(x-3)-log(x-4)-log(x-5) }\!\!]\!\!\text{ } $ 

Now, differentiating both sides of the equation with respect to $\text{x}$ give

$\dfrac{\text{dy}}{\text{dx}}=\dfrac{\text{1}}{\text{2}}\dfrac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ log(x-1)+log(x-2)-log(x-3)-log(x-4)-log(x-5) }\!\!]\!\!\text{ }$.

$\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}}\left[ \dfrac{\text{1}}{\text{x-1}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-1)+}\dfrac{\text{1}}{\text{x-2}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-2)-}\dfrac{\text{1}}{\text{x-3}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-3)-}\dfrac{\text{1}}{\text{x-4}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-4)} \right. $ 

$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. \text{-}\dfrac{\text{1}}{\text{x-5}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-5)} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}}{\text{2}}\left( \dfrac{\text{1}}{\text{x-1}}\text{+}\dfrac{\text{1}}{\text{x-2}}\text{+}\dfrac{\text{1}}{\text{x-3}}\text{+}\dfrac{\text{1}}{\text{x-4}}\text{+}\dfrac{\text{1}}{\text{x-5}} \right)$

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}}\sqrt{\dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}}}\left[ \dfrac{\text{1}}{\text{x-1}}\text{+}\dfrac{\text{1}}{\text{x-2}}\text{+}\dfrac{\text{1}}{\text{x-3}}\text{+}\dfrac{\text{1}}{\text{x-4}}\text{+}\dfrac{\text{1}}{\text{x-5}} \right]$.

3. Find the derivative of the function $\text{y=(logx}{{\text{)}}^{\text{cosx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(logx}{{\text{)}}^{\text{cosx}}}$.

First, taking logarithm both sides of the equation give 

$\text{logy=cosx}\text{.log(logx)}$.

Now, differentiating both sides of the equation with respect to $\text{x}$ give

$\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(cosx) }\!\!\times\!\!\text{ log(logx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(logx)} \right]$

$\Rightarrow \dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{=-sinxlog(logx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)}$, by applying the chain rule.

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \text{-sinxlog(logx)+}\dfrac{\text{cosx}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right]$

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{cosx}}}\left[ \dfrac{\text{cosx}}{\text{xlogx}}\text{-sin }\!\!\times\!\!\text{ log(logx)} \right]$.

4. Determine the derivative of the function $\text{y=}{{\text{x}}^{\mathbf{x}}}\text{-}{{\text{2}}^{\text{sinx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}{{\text{x}}^{\text{x}}}\text{-}{{\text{2}}^{\text{sinx}}}$.

Now, let ${{\text{x}}^{\text{x}}}\text{=u}$                                                                      …… (1)

and ${{\text{2}}^{\text{sinx}}}\text{=v}$.                                                                           …… (2)

Therefore, $\text{y=u-v}$.                                                                 …… (3)

Then differentiating the equation (3) with respect to $\text{x}$ gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}-\dfrac{\text{dv}}{\text{dx}}$                                                                       …… (4)

Now, taking logarithm both sides of the equation (1) give

$\text{log}\left( \text{u} \right)=\log \left( {{\text{x}}^{\text{x}}} \right) $ 

$\Rightarrow \log \text{u=xlogx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\left[ \dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ logx+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ logx+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(logx+1)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(1+logx)}$                                                      …… (5) 

Now, taking logarithm both sides of the equation (2) give

$\text{log}\left( {{\text{2}}^{\text{sinx}}} \right)\text{=logv}$

$\Rightarrow \text{logv=sinx }\!\!\times\!\!\text{ log2}$.

Differentiating both sides of the equation with respect to $\text{x}$, give

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dv}}{\text{dx}}\text{=log2 }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx}) $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=vlog2cosx} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}{{\text{2}}^{\text{sinx}}}\text{cosxlog2}$                                                 …… (6)      

Therefore, from the equation (4), (5) and (6) give

$\dfrac{\text{dy}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(1+logx)-}{{\text{2}}^{\text{sinx}}}\text{cosxlog}2$.

5. Find the derivative of the function $\mathbf{y=(x+3}{{\mathbf{)}}^{\mathbf{2}}}{{\mathbf{(x+4)}}^{\mathbf{3}}}{{\mathbf{(x+5)}}^{\mathbf{4}}}$ with respect to $\mathbf{x}$.

Ans. 

The given function is $\text{y=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}}$.

First, taking logarithm both sides of the equation give

$\text{logy=log}\left[ {{\text{(x+3)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}} \right]$

$\Rightarrow \text{logy=2log(x+3)+3log(x+4)+4log(x+5)}$

Now, differentiating both sides of the equation with respect to $\text{x}$, give

$\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dy}}\text{=2 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x-3}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dz}}\text{(x+3)+3 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x+4}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x+4)+4 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x+5}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x+5)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \dfrac{\text{2}}{\text{x+3}}\text{+}\dfrac{\text{3}}{\text{x+4}}\text{+}\dfrac{\text{4}}{\text{x+5}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }\left[ \dfrac{\text{2}}{\text{x+3}}\text{+}\dfrac{\text{3}}{\text{x+4}}\text{+}\dfrac{\text{4}}{\text{x+5}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }\left[ \dfrac{\text{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)}}{\text{(x+3)(x+4)(x+5)}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{2}}}{{\text{(x+5)}}^{\text{2}}}\text{-}\left[ \text{2(}{{\text{x}}^{\text{2}}}\text{+9x+20)+3(}{{\text{x}}^{\text{2}}}\text{+9x+15)+4(}{{\text{x}}^{\text{2}}}\text{+7x+12)} \right] $ 

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=(x+3)(x+4}{{\text{)}}^{\text{2}}}{{\text{(x+5)}}^{\text{3}}}\text{(9}{{\text{x}}^{\text{2}}}\text{+70x+133)}$.

6. Find the derivative of the function $\mathbf{y=}{{\left( \mathbf{x+}\dfrac{\mathbf{1}}{\mathbf{x}} \right)}^{\mathbf{x}}}\mathbf{+}{{\mathbf{x}}^{\left( \mathbf{1+}\dfrac{\mathbf{1}}{\mathbf{x}} \right)}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\text{+}{{\text{x}}^{\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right)}}$.

First, let $\text{u=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}$and $\text{v=}{{\text{x}}^{\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right)}}$

Therefore, $\text{y=u+v}$.                                         …… (1)

Differentiating the equation (1) both sides with respect to $\text{x}$ give

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{dv}}{\text{dx}}$ …... (2)

Now, $\text{u=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}$

$\Rightarrow \text{logu=log}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}$

$\Rightarrow \text{logu=xlog}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)$

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=1 }\!\!\times\!\!\text{ log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\text{x}}{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}\text{ }\!\!\times\!\!\text{ }\left( \text{x+}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right) \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\left( \text{x-}\dfrac{\text{1}}{\text{x}} \right)}{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}} \right] $

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{2}}}\left[ \dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}\text{+log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) \right]$ …… (3)

Also, $\text{v=}{{\text{x}}^{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}}$

 $\Rightarrow \text{logv=log}\left[ {{\text{x}}^{{{\text{x}}^{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}}}} \right] $ 

$\Rightarrow \text{logv=}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{logx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dv}}{\text{dx}}\text{=}\left[ \dfrac{\text{d}}{\text{dx}}\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right) \right]\text{ }\!\!\times\!\!\text{ logx+}\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right)\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{logx} $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=-}\dfrac{\text{logx}}{{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{1}}{\text{x}}\text{+}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left[ \dfrac{\text{-logx+x+1}}{{{\text{x}}^{\text{2}}}} \right]$           ……. (4)

Hence, from the equations (2), (3) and (4), give

$\dfrac{\text{dy}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\left[ \dfrac{{{\text{x}}^{\text{2}}}\text{-1}}{{{\text{x}}^{\text{2}}}\text{+1}}\text{+log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) \right]\text{+}{{\text{x}}^{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}}\left( \dfrac{\text{x+1-logx}}{{{\text{x}}^{\text{2}}}} \right)$.

7. Determine derivative of the function $\mathbf{y=(logx}{{\mathbf{)}}^{\mathbf{x}}}\mathbf{+}{{\mathbf{x}}^{\mathbf{logx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(logx}{{\text{)}}^{\text{x}}}\text{+}{{\text{x}}^{\text{logx}}}$.

Then, let $\text{u=(logx}{{\text{)}}^{\text{x}}}$ and $\text{v=}{{\text{x}}^{\text{logx}}}$.

Therefore, $\text{y=u+v}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dx}}$                             ……. (1)

Now, $\text{u=(logx}{{\text{)}}^{\text{x}}}$

$\Rightarrow \text{logu=log}\left[ {{\text{(logx)}}^{\text{x}}} \right] $ 

$\Rightarrow \text{logu=xlog(logx)} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ log(logx)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(logx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ log(logx)+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x}}}\left[ \text{log(logx)+}\dfrac{\text{x}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x}}}\left[ \text{log(logx)+}\dfrac{\text{1}}{\text{logx}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x}}}\text{=}\left[ \dfrac{\text{log(logx) }\!\!\times\!\!\text{ logx+1}}{\text{logx}} \right] $ 

$\dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x-1}}}\left[ \text{1+logx }\!\!\times\!\!\text{ log(logx)} \right]$ ……. (2)

Again, $\text{v=}{{\text{x}}^{\text{logx}}}$

$\Rightarrow \log \text{v=log}\left( {{\text{x}}^{\text{logx}}} \right) $ 

$\Rightarrow \log \text{v=logxlogx=}{{\left( \log \text{x} \right)}^{2}} $
Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dx}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\left[ {{\text{(logx)}}^{\text{2}}} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dx}}{\text{dx}}\text{=2(logx) }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=2}{{\text{x}}^{\text{logx}}}\dfrac{\text{logx}}{\text{x}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=2}{{\text{x}}^{\text{logx}}}\text{ }\!\!\times\!\!\text{ logx}$ ….…. (3)

Hence, from the equations (1), (2), and (3), gives

$\dfrac{\text{dy}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x+1}}}\left[ \text{1+logx }\!\!\times\!\!\text{ log(logx)} \right]\text{+2}{{\text{x}}^{\text{logx-1}}}\text{ }\!\!\times\!\!\text{ logx}$.

8. Find the derivative of the function  $\mathbf{y=(sinx}{{\mathbf{)}}^{\mathbf{x}}}\mathbf{+si}{{\mathbf{n}}^{\mathbf{-1}}}\sqrt{\mathbf{x}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(sinx}{{\text{)}}^{\text{x}}}\text{+si}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}$.

Now, let $\text{u=(sinx}{{\text{)}}^{\text{x}}}$ and $\text{v=si}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}$.

Therefore, $\text{y=u+v}$.

Then, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{-}\dfrac{\text{dv}}{\text{dx}}$       …….. (1)

Now, $\text{u=(sinx}{{\text{)}}^{\text{x}}}$

$\Rightarrow \text{logu=xlog(sinx}{{\text{)}}^{\text{x}}} $ 

$\Rightarrow \text{logu=xlog(sinx)} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ log(sinx)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ log(sinx)+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{x}}}\left[ \text{log(sinx)+}\dfrac{\text{x}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ cosx} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{x}}}\text{(xcotx+logsinx)}$ ….… (2)

Again,$\text{v=si}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{\sqrt{\text{1-(}\sqrt{\text{x}}{{\text{)}}^{\text{2}}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(}\sqrt{\text{x}}\text{)} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{\sqrt{\text{1-x}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{2}\sqrt{\text{x}}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}\sqrt{\text{x-}{{\text{x}}^{\text{2}}}}}$

Hence, from the equations (1), (2) and (3), gives

$\dfrac{\text{dv}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{2}}}\text{(xcotx+logsinx)+}\dfrac{\text{1}}{\text{2}\sqrt{\text{x-}{{\text{x}}^{\text{2}}}}}$.

9. Find the derivative of the function $\mathbf{y=}{{\mathbf{x}}^{\mathbf{sinx}}}\mathbf{+(sinx}{{\mathbf{)}}^{\mathbf{cosx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}{{\text{x}}^{\text{sinx}}}\text{+(sinx}{{\text{)}}^{\text{cosx}}}$.

Then, let $\text{u=}{{\text{x}}^{\text{sinx}}}$ and $\text{v=(sinx}{{\text{)}}^{\text{cosx}}}$.

Therefore, $\text{y=u+v}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{-}\dfrac{\text{dv}}{\text{dx}}$               …… (1)

Now, $\text{u=}{{\text{x}}^{\text{sinx}}}$

$\Rightarrow \text{logu=xlog(}{{\text{x}}^{\text{sinx}}}\text{)} $ 

$\Rightarrow \text{logu=sinxlogx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(sinx) }\!\!\times\!\!\text{ logx+sinx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u=}\left[ \text{cosxlogx+sinx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{sinx}}}\left[ \text{cosxlogx+}\dfrac{\text{sinx}}{\text{x}} \right]$                     ….... (2)

Again, $\text{v=(sinx}{{\text{)}}^{\text{cosx}}}$

$\Rightarrow \text{logv=log(sinx}{{\text{)}}^{\text{cosx}}} $ 

$\Rightarrow \text{logv=cosxlog(sinx)} $ 

Then, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(cosx) }\!\!\times\!\!\text{ log(sinx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left[ \text{-sinx }\!\!\times\!\!\text{ log(sinx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{cosx}}}\left[ \text{-sinxlogsinx+cotxcosx} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{cosx}}}\text{ }\!\![\!\!\text{ cosxcotx+sinxlogsinx }\!\!]\!\!\text{ }$ …… (3)

Hence, from the equations (1), (2) and (3), gives

$\dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{sinx}}}\left( \text{cosxlogx+}\dfrac{\text{sinx}}{\text{x}} \right)\text{+(sinx}{{\text{)}}^{\text{cosx}}}\text{ }\!\![\!\!\text{ cosxcotx+sinxlogsinx }\!\!]\!\!\text{ }$.

10. Find the derivative function $\mathbf{y=}{{\mathbf{x}}^{\mathbf{xcosx}}}\mathbf{+}\dfrac{{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+1}}{{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-1}}$ with respect to $\mathbf{x}$.

Ans. 

The given function is $\text{y=}{{\text{x}}^{\text{xcosx}}}\text{+}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}$.

First, let $\text{u=}{{\text{x}}^{\text{xcosx}}}$ and $\text{v=}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}$.

Therefore, $\text{y=u+v}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{-}\dfrac{\text{dv}}{\text{dx}}$ ……. (1)

Now, $\text{u=}{{\text{x}}^{\text{xcosx}}}$.

Then, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ cosxlogx+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cosx) }\!\!\times\!\!\text{ logx+xcosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ cosx }\!\!\times\!\!\text{ logx+x }\!\!\times\!\!\text{ (-sinx)logx+xcosx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{xcosx}}}\text{(cosxlogx-xsinxlogx+cosx})$ …… (2)

Again, $\text{v=}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}$

$\Rightarrow \text{logv=log(}{{\text{x}}^{\text{2}}}\text{+1)-log(}{{\text{x}}^{\text{2}}}\text{-1)}$

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{=}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{2x}}{{{\text{x}}^{\text{2}}}\text{+1}}\text{-}\dfrac{\text{2x}}{{{\text{x}}^{\text{2}}}\text{-1}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left[ \dfrac{\text{2x(}{{\text{x}}^{\text{2}}}\text{-1)-2x(}{{\text{x}}^{\text{2}}}\text{+1)}}{\text{(}{{\text{x}}^{\text{2}}}\text{+1)(}{{\text{x}}^{\text{2}}}\text{-1)}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}\text{ }\!\!\times\!\!\text{ }\left[ \dfrac{\text{-4x}}{\text{(}{{\text{x}}^{\text{2}}}\text{+1)(}{{\text{x}}^{\text{2}}}\text{-1)}} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{-4x}}{{{\text{(}{{\text{x}}^{\text{2}}}\text{-1)}}^{\text{2}}}}$ …….. (3)

Hence, from the equations (1), (2) and (3), give

$\dfrac{\text{dv}}{\text{dx}}\text{=}{{\text{x}}^{\text{xcosx}}}\left[ \text{cosx(1+logx)-xsinxlogx} \right]\text{-}\dfrac{\text{4x}}{{{\text{(}{{\text{x}}^{\text{2}}}\text{-1)}}^{\text{2}}}}$.

11. Find the derivative of the function $\mathbf{y=(xcosx}{{\mathbf{)}}^{\mathbf{x}}}\mathbf{+(xsinx}{{\mathbf{)}}^{\dfrac{\mathbf{1}}{\mathbf{x}}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(xcosx}{{\text{)}}^{\text{x}}}\text{+(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}$.

Then, let $\text{u=(xcosx}{{\text{)}}^{\text{x}}}$ and $\text{v=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}$.

Therefore, $\text{y=u+v}$.

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dx}}$                                                         ……. (1)

Again, $\text{u=(cosx}{{\text{)}}^{\text{x}}}$

$\Rightarrow \text{logu=log(xcosx}{{\text{)}}^{\text{x}}} $ 

$\Rightarrow \text{logu=xlog(xcosx)} $ 

$\Rightarrow \text{logu=x }\!\![\!\!\text{ logx+logcosx }\!\!]\!\!\text{ } $ 

$\Rightarrow \text{logu=xlogx+xlogcosx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(xlogx+xlogcosx)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \left\{ \text{logx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right\}\text{+}\left\{ \text{logcosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logcosx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \left\{ \text{logx }\!\!\times\!\!\text{ 1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right\}\text{+}\left\{ \text{logcosx-1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cosx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \left\{ \text{logx+1} \right\}\text{+}\left\{ \text{logcosx-1+}\dfrac{\text{x}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ (-sinx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \text{(logx+1)+(logcosx-xtanx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \text{1-xtanx+(logx+logcosx)} \right]$

Therefore,

$\dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \text{1-xtanx+(logx(xcosx)} \right]$   …….. (2)

Again, $\text{v=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}$

$\Rightarrow \text{logv=log(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}} $ 

$\Rightarrow \text{logv=}\dfrac{\text{1}}{\text{x}}\text{log(xsinx)} $ 

$\Rightarrow \text{logv=}\dfrac{\text{1}}{\text{x}}\text{(logx+logsinx)} $ 

$\Rightarrow \text{logv=}\dfrac{\text{1}}{\text{x}}\text{logx+}\dfrac{\text{1}}{\text{x}}\text{logsinx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\left( \dfrac{\text{1}}{\text{x}}\text{logx} \right)\text{+}\dfrac{\text{d}}{\text{dx}}\left[ \dfrac{\text{1}}{\text{x}}\text{log(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\left[ \dfrac{\text{1}}{\text{x}}\text{logx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left( \dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right]\text{+}\left[ \text{log(sinx) }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left( \dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left\{ \text{(logsinx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\left[ \dfrac{\text{1}}{\text{x}}\text{logx }\!\!\times\!\!\text{ }\left( \text{-}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right]\text{+}\left[ \text{log(sinx) }\!\!\times\!\!\text{ }\left( \text{-}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}}\text{(1-logx)+}\left[ \dfrac{\text{1-logx}}{{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{1}}{\text{xsinx}}\text{ }\!\!\times\!\!\text{ cosx} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}}{{\text{(xsinx)}}^{\dfrac{\text{1}}{\text{x}}}}\text{+}\left[ \dfrac{\text{1-logx}}{{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{-log(sinx)+xcotx}}{{{\text{x}}^{\text{2}}}} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}\left[ \dfrac{1-\log x-\log (\sin x)+x\cot x}{{{\text{x}}^{\text{2}}}} \right] $ 

Therefore,

$\dfrac{\text{dv}}{\text{dx}}\text{=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}\left[ \dfrac{\text{1-log(xsinx)+xcotx}}{{{\text{x}}^{\text{2}}}} \right]$ ……. (3)

Hence, from the equations (1), (2) and (3), gives

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{2}}}\left[ \text{1-xtanx+log(xcosx)} \right]\text{+(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}\left[ \dfrac{\text{1-log(xsinx)+xcotx}}{{{\text{x}}^{\text{2}}}} \right]$.

12. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation ${{\mathbf{x}}^{\mathbf{y}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{x}}}\mathbf{=1}$.

Ans.

The given function is ${{\text{x}}^{\text{y}}}\text{+}{{\text{y}}^{\text{x}}}\text{=1}$.

Then, let ${{\text{x}}^{\text{y}}}\text{=u}$ and ${{\text{y}}^{\text{x}}}\text{=v}$.

Therefore, $\text{u+v=1}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dy}}\text{=0}$

Now, $\text{u=}{{\text{x}}^{\text{y}}}$                             ……. (1)

$\Rightarrow \text{logu=log(}{{\text{x}}^{\text{y}}}\text{)} $ 

$\Rightarrow \text{logu=ylogx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=logx}\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)}$

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{logx}\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right]$

Therefore, $\dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{y}}}\left[ \text{logx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{x}} \right]$ ………… (2)

Also, $\text{v=}{{\text{y}}^{\text{x}}}$

Taking logarithm both sides of the equation give

$\Rightarrow \text{logv=log(}{{\text{y}}^{\text{3}}}\text{)} $ 

$\Rightarrow \text{logv=xlogy} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dv}}{\text{dx}}\text{=logy }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logy)}$

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left( \text{logy }\!\!\times\!\!\text{ 1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}} \right)$

Therefore, $\dfrac{\text{dv}}{\text{dx}}\text{=}{{\text{y}}^{\text{x}}}\left( \text{logy+}\dfrac{\text{x}}{\text{y}}\dfrac{\text{dy}}{\text{dx}} \right)$ ……... (3)

So, from the equation (1), (2) and (3), gives

${{\text{x}}^{\text{y}}}\left( \text{logx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{x}} \right)\text{+}{{\text{y}}^{\text{x}}}\left( \text{logy+}\dfrac{\text{x}}{\text{y}}\dfrac{\text{dy}}{\text{dx}} \right)\text{=0} $ 

$\Rightarrow \left( {{\text{x}}^{\text{2}}}\text{+logx+x}{{\text{y}}^{\text{y-1}}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=-}\left( \text{y}{{\text{x}}^{\text{y-1}}}\text{+}{{\text{y}}^{\text{x}}}\text{logy} \right) $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}{{\text{x}}^{\text{y-1}}}\text{+}{{\text{y}}^{\text{x}}}\text{logy}}{{{\text{x}}^{\text{y}}}\text{logx+x}{{\text{y}}^{\text{x-1}}}}$.

13. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation ${{\text{y}}^{\text{x}}}\text{=}{{\text{x}}^{\text{y}}}$.

Ans.

The given equation is ${{\text{y}}^{\text{x}}}\text{=}{{\text{x}}^{\text{y}}}$.

Then, taking logarithm both sides of the equation give

$\text{xlogy=ylogx}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\text{logy }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logy)=logx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(y)+y }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \text{logy }\!\!\times\!\!\text{ 1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{=logx }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} $ 

$\Rightarrow \text{logy+}\dfrac{\text{x}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=logx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{x}} $ 

$\Rightarrow \left( \dfrac{\text{x}}{\text{y}}\text{-logx} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}}{\text{x}}\text{-logy} $ 

$\Rightarrow \left( \dfrac{\text{x-ylogx}}{\text{y}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y-xlogy}}{\text{x}} $ 

$\Rightarrow \left( \dfrac{\text{x-ylogx}}{\text{y}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y-xlogy}}{\text{x}} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}}{\text{x}}\left( \dfrac{\text{y-xlogy}}{\text{x-ylogx}} \right)$.

14. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation ${{\text{(cosx)}}^{\text{y}}}\text{=(cosy}{{\text{)}}^{\text{x}}}$.

Ans.

The given equation is ${{\text{(cosx)}}^{\text{y}}}\text{=(cosy}{{\text{)}}^{\text{x}}}$.

Then, taking logarithm both sides of the equation give

$\text{ylogcosx=xlogcosy}$.

Now, differentiating both sides of the equation with respect to $\text{x}$ gives

$\text{logcosx }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logcosx)=logcosy }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logcosy}) $ 

$\Rightarrow \text{logcosx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ (-sinx)=logcosy+}\dfrac{\text{x}}{\text{cosy}}\text{(-siny) }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}} $ 

$\Rightarrow \text{logcosx}\dfrac{\text{dy}}{\text{dx}}\text{-ytanx=logcosy-xtany}\dfrac{\text{dy}}{\text{dx}} $ 

$\Rightarrow \text{(logcosx+xtany)}\dfrac{\text{dy}}{\text{dx}}\text{=ytanx+logcosy} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{ytanx+logcosy}}{\text{xtany+logcosx}}$.

15. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation $\text{xy=}{{\text{e}}^{\text{(x-y)}}}$.

Ans. 

The given equation is $\text{xy=}{{\text{e}}^{\text{(x-y)}}}$.

Then, taking logarithm both sides of the equation give

$\text{log(xy)=log(}{{\text{e}}^{\text{x-y}}}\text{)} $ 

$\Rightarrow \text{logx+logy=(x-y)loge} $ 

$\Rightarrow \text{logx+logy=(x-y) }\!\!\times\!\!\text{ 1} $ 

$\Rightarrow \text{logx+logy=x-y} $ 

Now, differentiating both sides of the equation with respect to $\text{x}$ gives 

$\dfrac{\text{d}}{\text{dx}}\text{(logx)+}\dfrac{\text{d}}{\text{dx}}\text{(logy)=}\dfrac{\text{d}}{\text{dx}}\text{(x)-}\dfrac{\text{dy}}{\text{dx}} $ 

$\Rightarrow \dfrac{\text{1}}{\text{x}}\text{+}\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=1-}\dfrac{\text{1}}{\text{x}} $ 

$\Rightarrow \left( \text{1+}\dfrac{\text{1}}{\text{y}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{x-1}}{\text{x}} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y(x-1)}}{\text{x(x+1)}}$.

16. Determine the derivative of the following function $\mathbf{f}$ and hence evaluate $\mathbf{f'(1)}$. 

$\text{f(x)=(1+x)(1+}{{\text{x}}^{\text{2}}}\text{)(1+}{{\text{x}}^{\text{4}}}\text{)(1+}{{\text{x}}^{\text{8}}}\text{)}$.

Ans.

The given function is $\text{f(x)=(1+x)(1+}{{\text{x}}^{\text{2}}}\text{)(1+}{{\text{x}}^{\text{4}}}\text{)(1+}{{\text{x}}^{\text{8}}}\text{)}$.

By taking logarithm both sides of the equation give

$\text{logf(x)=log(1+x)+log(1+}{{\text{x}}^{\text{2}}}\text{)+log(1+}{{\text{x}}^{\text{4}}}\text{)+log(1+}{{\text{x}}^{\text{8}}}\text{)}$

Now, differentiating both sides of the equation with respect to $\text{x}$ gives $\dfrac{\text{1}}{\text{f(x)}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ f(x) }\!\!]\!\!\text{ =}\dfrac{\text{d}}{\text{dx}}\text{log(1+x)+}\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{2}}}\text{)+}\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{4}}}\text{)+}\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{8}}}\text{)} $ 

$\Rightarrow \dfrac{\text{1}}{\text{f(x)}}\text{ }\!\!\times\!\!\text{ f }\!\!'\!\!\text{ (x)=}\dfrac{\text{1}}{\text{1+x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{dx}}\text{(1+x)+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{2}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{2}}}\text{)+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{4}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{4}}}\text{)} $ 

$\text{+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{8}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{8}}}\text{)} $ 

$\Rightarrow \text{f }\!\!'\!\!\text{ (x)=f(x)}\left[ \dfrac{\text{1}}{\text{1+x}}\text{+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{2}}}}\text{ }\!\!\times\!\!\text{ 2x+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{4}}}}\text{ }\!\!\times\!\!\text{ 4}{{\text{x}}^{\text{3}}}\text{+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{8}}}}\text{ }\!\!\times\!\!\text{ 8}{{\text{x}}^{\text{7}}} \right] $ 

Therefore,

$\text{f }\!\!'\!\!\text{ (x)=(1+x)(1+}{{\text{x}}^{\text{2}}}\text{)(1+}{{\text{x}}^{\text{4}}}\text{)(1+}{{\text{x}}^{\text{8}}}\text{)}\left[ \dfrac{\text{1}}{\text{1+x}}\text{+}\dfrac{\text{2x}}{\text{1+}{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{4}{{\text{x}}^{\text{3}}}}{\text{1+}{{\text{x}}^{\text{4}}}}\text{+}\dfrac{\text{8}{{\text{x}}^{\text{7}}}}{\text{1+}{{\text{x}}^{\text{8}}}} \right]$

So, 

$\text{f }\!\!'\!\!\text{ (1)=(1+1)(1+}{{\text{1}}^{\text{2}}}\text{)(1+}{{\text{1}}^{\text{4}}}\text{)(1+}{{\text{1}}^{\text{8}}}\text{)}\left[ \dfrac{\text{1}}{\text{1+1}}\text{+}\dfrac{\text{2 }\!\!\times\!\!\text{ 1}}{\text{1+}{{\text{1}}^{\text{2}}}}\text{+}\dfrac{\text{4 }\!\!\times\!\!\text{ }{{\text{1}}^{\text{3}}}}{\text{1+}{{\text{1}}^{\text{4}}}}\text{+}\dfrac{\text{8 }\!\!\times\!\!\text{ }{{\text{1}}^{\text{7}}}}{\text{1+}{{\text{1}}^{\text{8}}}} \right] $ 

$\text{=2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2}\left[ \dfrac{\text{1}}{\text{2}}\text{+}\dfrac{\text{2}}{\text{2}}\text{+}\dfrac{\text{4}}{\text{2}}\text{+}\dfrac{\text{8}}{\text{2}} \right] $ 

$\text{=16 }\!\!\times\!\!\text{ }\left( \dfrac{\text{1+2+4+8}}{\text{2}} \right) $ 

$\text{=16 }\!\!\times\!\!\text{ }\dfrac{\text{15}}{\text{2}}\text{=120} $ 

Hence, $\text{{f}'}\left( \text{1} \right)\text{=120}$.

17. Differentiate the function $\mathbf{y=(}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-5x+8)(}{{\mathbf{x}}^{\mathbf{3}}}\mathbf{+7x+9)}$ in three ways as described below. Also, verify whether all the answers are the same. 

(a) By using product rules. 

Ans.

The given function is $\text{y=}\left( {{\text{x}}^{\text{2}}}\text{-5x+8} \right)\left( {{\text{x}}^{\text{3}}}\text{+7x+9} \right)$.

Now, let consider $\text{u=(}{{\text{x}}^{\text{2}}}\text{-5x+8)}$ and $\text{v=(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$

Therefore, $\text{y=uv}$.

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dv}}\text{.v+u}\text{.}\dfrac{\text{du}}{\text{dx}} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{-5x+8)}\text{.(}{{\text{x}}^{\text{3}}}\text{+7x+9)+(}{{\text{x}}^{\text{2}}}\text{-5x+8)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(2x-5)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}\text{.(}{{\text{x}}^{\text{2}}}\text{-5x+8)(3}{{\text{x}}^{\text{2}}}\text{+7)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=2x(}{{\text{x}}^{\text{3}}}\text{+7x+9)-5(}{{\text{x}}^{\text{2}}}\text{-5x+8)+}{{\text{x}}^{\text{2}}}\text{(3}{{\text{x}}^{\text{2}}}\text{+7)-5x(3}{{\text{x}}^{\text{2}}}\text{+7)-8(3}{{\text{x}}^{\text{2}}}\text{+7)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(2}{{\text{x}}^{\text{4}}}\text{+14}{{\text{x}}^{\text{2}}}\text{+18x)-5}{{\text{x}}^{\text{3}}}\text{-35x-45+(3}{{\text{x}}^{\text{4}}}\text{+7}{{\text{x}}^{\text{2}}}\text{)-15}{{\text{x}}^{\text{3}}}\text{-35x+24}{{\text{x}}^{\text{2}}}\text{+56} $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=5}{{\text{x}}^{\text{4}}}\text{-20}{{\text{x}}^{\text{3}}}\text{+45}{{\text{x}}^{\text{2}}}\text{+52x+11}$.

(b) By expanding the factors as a polynomial.

Ans.

The given function is

$\text{y=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$.

Then, calculating the product, gives

$\text{y=}{{\text{x}}^{\text{2}}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)-5}{{\text{x}}^{\text{4}}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)+8(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \text{y=}{{\text{x}}^{\text{5}}}\text{+7}{{\text{x}}^{\text{3}}}\text{+9}{{\text{x}}^{\text{2}}}\text{-5}{{\text{x}}^{\text{3}}}\text{-26}{{\text{x}}^{\text{2}}}\text{+11x+72} $ 

Now, differentiating both sides of the equation with respect to $\text{x}$ gives $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{5}}}\text{+7}{{\text{x}}^{\text{3}}}\text{+9}{{\text{x}}^{\text{2}}}\text{-5}{{\text{x}}^{\text{3}}}\text{-26}{{\text{x}}^{\text{2}}}\text{+11x+72)} $ 

$=\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{5}}}\text{)-5}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{4}}}\text{)+15}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{)-26}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{)+11}\dfrac{\text{d}}{\text{dx}}\text{(x)+}\dfrac{\text{d}}{\text{dx}}\text{(72)} $ 

$\text{=5}{{\text{x}}^{\text{4}}}\text{-5 }\!\!\times\!\!\text{ 4}{{\text{x}}^{\text{3}}}\text{+15 }\!\!\times\!\!\text{ 3}{{\text{x}}^{\text{2}}}\text{-26 }\!\!\times\!\!\text{ 2x+11 }\!\!\times\!\!\text{ 1+0} $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=5}{{\text{x}}^{\text{4}}}\text{-20}{{\text{x}}^{\text{3}}}\text{+45}{{\text{x}}^{\text{2}}}\text{-52x+11}$.

(c) By using a logarithmic function.

Ans.    

The given function is

$\text{y=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$.

Now, taking logarithm both sides of the function give

$\text{logy=log(}{{\text{x}}^{\text{2}}}\text{-5x+8)+log(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{log(}{{\text{x}}^{\text{2}}}\text{-5x+8)+}\dfrac{\text{d}}{\text{dx}}\text{log(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}\text{-5x+8}}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{-5x+8)+}\dfrac{\text{1}}{{{\text{x}}^{\text{3}}}\text{+7x+9}}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \dfrac{\text{1}}{{{\text{x}}^{\text{2}}}\text{-5x+8}}\text{ }\!\!\times\!\!\text{ (2x-5)+}\dfrac{\text{1}}{{{\text{x}}^{\text{3}}}\text{+7x+9}}\text{ }\!\!\times\!\!\text{ (3}{{\text{x}}^{\text{2}}}\text{+7)} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}\left[ \dfrac{\text{2x-5}}{{{\text{x}}^{\text{3}}}\text{-5x+8}}\text{+}\dfrac{\text{3}{{\text{x}}^{\text{2}}}\text{+7}}{{{\text{x}}^{\text{3}}}\text{+7x+9}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}\left[ \dfrac{\text{(2x-5)(}{{\text{x}}^{\text{3}}}\text{+7x+9)+(3}{{\text{x}}^{\text{2}}}\text{+7)(}{{\text{x}}^{\text{2}}}\text{-5x+8)}}{\text{(}{{\text{x}}^{\text{3}}}\text{-5x+8)+(}{{\text{x}}^{\text{3}}}\text{+7x+9)}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=2x(}{{\text{x}}^{\text{3}}}\text{+7x+9}{{\text{x}}^{\text{2}}}\text{)-5(}{{\text{x}}^{\text{3}}}\text{+7x+9)+3}{{\text{x}}^{\text{2}}}\text{(}{{\text{x}}^{\text{2}}}\text{-5x+8)+7(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(2}{{\text{x}}^{\text{4}}}\text{+14}{{\text{x}}^{\text{2}}}\text{+18x)+(5}{{\text{x}}^{\text{3}}}\text{-35x+45)+(3}{{\text{x}}^{\text{4}}}\text{-15}{{\text{x}}^{\text{3}}}\text{+24}{{\text{x}}^{\text{2}}}\text{)+(7}{{\text{x}}^{\text{2}}}\text{+35x+56)} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=5}{{\text{x}}^{\text{2}}}\text{-20}{{\text{x}}^{\text{3}}}\text{+45}{{\text{x}}^{\text{2}}}\text{-52x+11}$.

Hence, comparing the above three results, it is concluded that the derivative $\dfrac{\text{dy}}{\text{dx}}$ are the same for all methods.

18. Let $\mathbf{u}$, $\mathbf{v}$, and $\mathbf{w}$ are functions of $\mathbf{x}$ , then prove that $\dfrac{\text{d}}{\text{dx}}\text{(u}\text{.v}\text{.w)=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\dfrac{\text{du}}{\text{dx}}\text{.w+u}\text{.v}\dfrac{\text{dw}}{\text{d}\mathbf{x}}$ in two ways. First by using repeated application of product rule and second by applying logarithmic differentiation. 

Ans.

Let the function $\text{y=u}\text{.v}\text{.w=u}\text{.(v}\text{.w)}$.

Then applying the product rule of derivatives, give

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{.(v}\text{.w)+u}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(v}\text{.w)}$          

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\left[ \dfrac{\text{dv}}{\text{dx}}\text{.w+v}\text{.}\dfrac{\text{dv}}{\text{dx}} \right]$        (Using the product rule again)

Thus,

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\text{.}\dfrac{\text{dv}}{\text{dx}}\text{.w+u}\text{.v}\dfrac{\text{dw}}{\text{dx}}$.

Now, take the logarithm of both sides of the function $\text{y=u}\text{.v}\text{.w}$.

Then, we have $\text{logy=logu+logv+logw}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives $\dfrac{\text{1}}{\text{y}}\text{.}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(logu)+}\dfrac{\text{d}}{\text{dx}}\text{(logv)+}\dfrac{\text{d}}{\text{dx}}\text{(logw)} $ 

$\Rightarrow \dfrac{\text{1}}{\text{y}}\text{.}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{w}}\dfrac{\text{dw}}{\text{dx}} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left( \dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{w}}\dfrac{\text{dw}}{\text{dx}} \right) $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=u}\text{.v}\text{.w}\left( \dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{w}}\dfrac{\text{dw}}{\text{dx}} \right) $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\dfrac{\text{du}}{\text{dx}}\text{.w+u}\text{.v}\dfrac{\text{dw}}{\text{dx}}$.


Conclusion

Class 12 Maths Chapter 5 Exercise 5.5 - Continuity and Differentiability, is crucial for a solid foundation in math. Understanding the concepts of differentiability and continuity of functions. Referring to these NCERT Solutions by Vedantu can significantly enhance your understanding of continuity and differentiability. Regular practice with Class 12 Exercise 5.5 NCERT solutions provided by platforms like Vedantu can enhance comprehension and problem-solving skills. Pay attention to the step-by-step solutions provided, grasp the underlying principles, and ensure clarity on the concepts before moving forward.


Class 12 Maths Chapter 5: Exercises Breakdown

S.No.

Chapter 5 - Continuity and Differentiability Exercises in PDF Format

1

Class 12 Maths Chapter 5 Exercise 5.1 - 34 Questions & Solutions (10 Short Answers, 24 Long Answers)

2

Class 12 Maths Chapter 5 Exercise 5.2 - 10 Questions & Solutions (2 Short Answers, 8 Long Answers)

3

Class 12 Maths Chapter 5 Exercise 5.3 - 15 Questions & Solutions (9 Short Answers, 6 Long Answers)

4

Class 12 Maths Chapter 5 Exercise 5.4 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers)

5

Class 12 Maths Chapter 5 Exercise 5.6 - 11 Questions & Solutions (7 Short Answers, 4 Long Answers)

6

Class 12 Maths Chapter 5 Exercise 5.7 - 17 Questions & Solutions (10 Short Answers, 7 Long Answers)

7

Class 12 Maths Chapter 5 Miscellaneous Exercise - 22 Questions & Solutions



CBSE Class 12 Maths Chapter 5 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner
Best Seller - Grade 12 - JEE
View More>
Previous
Next

FAQs on NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.5

1. What methods are commonly used in NCERT Solutions for Class 12 Maths Chapter 5 to differentiate complex functions?

NCERT Solutions for Class 12 Maths Chapter 5 regularly apply logarithmic differentiation, the product rule, quotient rule, and chain rule to break down and compute derivatives of complicated expressions. These techniques simplify products of several functions, exponents with variable bases/powers, and compositions, making stepwise solutions easier as required by the CBSE 2025–26 pattern.

2. How does following the step-by-step approach in NCERT Solutions improve your ability to solve CBSE board problems in Continuity and Differentiability?

The step-by-step method ensures that each stage of a solution—from identifying the type of function and applicable rules to substituting values and simplifying results—is clearly presented. This approach mirrors the CBSE mark allocation system, where marks are awarded for correctly writing out steps, and helps avoid missing steps or calculation errors, leading to higher accuracy in board exams.

3. What are higher-order derivatives, and why are they important in Exercise 5.5 solutions?

Higher-order derivatives refer to derivatives taken repeatedly, such as the second or third derivative (d²y/dx², d³y/dx³). They are important in Exercise 5.5 because they help analyse the behavior of functions beyond just the slope, including inflection points and concavity, which are essential for advanced calculus problems and applications.

4. How can students avoid common mistakes while applying the product and chain rules in Class 12 Maths Chapter 5?

  • Label each function before differentiating.
  • Apply the chain rule to nested functions and the product rule to the multiplication of two or more functions.
  • Do not skip intermediary simplification steps.
  • Always check the domain to ensure the function and its derivatives are valid at the points considered.

5. What is the relationship between continuity and differentiability as taught in Chapter 5 NCERT Solutions?

Continuity means a function has no holes or jumps at a point, while differentiability means it has a well-defined slope (derivative) there. Every differentiable function is continuous, but not every continuous function is differentiable. Points where the graph has a sharp corner or cusp are continuous but not differentiable.

6. Why is logarithmic differentiation especially useful for certain derivative problems in Exercise 5.5?

Logarithmic differentiation is useful when dealing with products, quotients, or powers where the base and exponent are both variable, as it turns multiplicative relationships into additive ones after taking logarithms. This transformation simplifies the differentiation process using standard rules, and it is frequently required by CBSE board questions involving complicated expressions.

7. What strategies can help students tackle HOTS (Higher Order Thinking Skills) problems in Continuity and Differentiability?

  • Break down composite functions into smaller parts.
  • Apply multiple differentiation techniques in sequence, like combining chain and product rules.
  • Test continuity and differentiability separately at critical points.
  • Understand graphical interpretations—visualize the function to predict behavior at specific points.

8. How do NCERT Solutions ensure alignment with the official CBSE Class 12 Maths marking scheme?

Each solution follows the prescribed marks pattern by showing all mathematical steps, referencing applicable rules (e.g., product or chain rule), and organizing the answer in a logical sequence. Final answers are highlighted, matching CBSE 2025–26 expectations for logical progression and clarity.

9. What should students do if they find themselves struggling with determining whether a function is continuous or differentiable at a point in Exercise 5.5?

Begin by directly applying definitions: check if the limit of the function exists and equals the function’s value (for continuity), then verify if the derivative exists at the point. If stuck, revisit solved examples for similar function types, ask for teacher support, and practise on simpler problems first to build confidence.

10. In what ways do the concepts from Continuity and Differentiability connect to real-life applications or to subsequent chapters in Class 12 Maths?

These concepts are foundational for physics (motion, rates of change), economics (optimization), and form the basis of integration, differential equations, and application of derivatives, all of which are advanced topics in further Mathematics and are tested in board and competitive exams.

11. How can one recognize whether a function is continuous but not differentiable, with an example?

A classic example is f(x) = |x|. This function is continuous everywhere, including at x = 0, but it is not differentiable at x = 0 because the graph forms a sharp "V" (the left and right derivatives at zero are not equal).

12. What is the core structure of NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.5 and how does it help in self-study?

The structure involves stating the problem, identifying formulas, elaborating each step of derivation (often via logarithmic or standard differentiation methods), simplifying sequentially, and boxing the final answer. This organized method helps students develop procedural fluency and track their own mistakes during self-preparation.

13. How can mastering the solutions in Exercise 5.5 prepare students for JEE and other competitive exams?

Mastery ensures you can handle complex derivatives, function manipulations, and analytical thinking—all core elements in JEE Calculus sections. The logical steps and accuracy demanded in CBSE-aligned NCERT Solutions sharpen skills needed for any standardized maths test.

14. What advanced skills do students build by working with problems involving three or more multiplied or composite functions?

Students learn to apply the product rule in extension to multiple factors and use repeated application or logarithmic differentiation effectively. This builds not only technical skill but also the ability to decompose and sequence large expressions, which is critical in higher mathematics.

15. Why is it recommended to practice every solved example before attempting unsolved questions using NCERT Solutions for Chapter 5?

Solved examples demonstrate the full application of rules and expected answer formats. Practising them first strengthens the conceptual understanding and problem-solving flow needed before tackling unfamiliar problems, reducing errors and boosting exam confidence.