NCERT Solutions for Maths Class 8 Chapter 8 Algebraic Expressions and Identities Exercise 8.3 - FREE PDF Download
NCERT Solution for Class 8 Maths Chapter 8 Exercise 8.3, where we dive into the exciting world of algebraic expressions and identities! In this exercise, students will explore how to multiply monomials by polynomials and binomials, an essential skill in algebra. Students can access the revised Class 8 Maths NCERT Solutions from our page which is prepared in such a way that you can understand it easily.


In the Class 8, Exercise 8.3 we'll begin by revisiting the basic concepts of monomials, binomials, and polynomials, and then proceed to learn the techniques for multiplying these expressions. Understanding the distributive property will be key as you simplify and expand algebraic expressions. Access the Class 8 Maths Syllabus here.
Access NCERT Solutions for Class 8 Chapter 11- Mensuration
Exercise 8.3
1. Carry out the multiplication of the expressions in each of the following pairs.
i. $4p$, $q + r$
Ans: The product of given terms is,
$\left( {4p} \right) \times \left( {q + r} \right) = 4p \times \left( q \right) + 4p \times \left( r \right)$
$= 4pq + 4pr$
ii. $ab$,$a - b$
Ans: The product of given terms is,
$\left( {ab} \right) \times \left( {a - b} \right) = \left( {ab} \right) \times a - \left( {ab} \right) \times b$
$= {a^2}b - a{b^2}$
iii. $a + b$,$7{a^2}{b^2}$
Ans: The product of given terms is,
$\left( {a + b} \right) \times \left( {7{a^2}{b^2}} \right) = \left( {a \times 7{a^2}{b^2}} \right) + \left( {b \times 7{a^2}{b^2}} \right)$
$= 7{a^3}{b^2} + 7{a^2}{b^3}$
iv. ${a^2} - 9$,$4a$
Ans: The product of given terms is,
$\left( {{a^2} - 9} \right) \times \left( {4a} \right) = \left( {{a^2} \times 4a} \right) + \left( { - 9 \times 4a} \right)$
$= 4{a^2} + \left( { - 36a} \right)$
$= 4{a^2} - 36a$
v. $pq + qr + rp$,$0$
Ans: The product of given terms is,
$\left( {pq + qr + rp} \right) \times \left( 0 \right) = \left( {pq \times 0} \right) + \left( {qr \times 0} \right) + \left( {rp \times 0} \right)$
$= 0 + 0 + 0 = 0$
2. Complete the following table.
---- | First Expression | Second Expression | Product |
(i) | $a$ | $b + c + d$ | - |
(ii) | $x + y - 5$ | $5xy$ | - |
(iii) | $p$ | $6{p^2} - 7p + 5$ | - |
(iv) | $4{p^2}{q^2}$ | ${p^2} - {q^2}$ | - |
(v) | $a + b + c$ | $abc$ | - |
Ans: The Complete table is,
---- | First Expression | Second Expression | Product |
(i) | $a$ | $b + c + d$ | $ab +ac + cd$ |
(ii) | $x + y - 5$ | $5xy$ | $5{x^2}y + 5x{y^2} - 25xy$ |
(iii) | $p$ | $6{p^2} - 7p + 5$ | $6{p^3} - 7{p^2} + 5p$ |
(iv) | $4{p^2}{q^2}$ | ${p^2} - {q^2}$ | $4{p^4}{q^2} - 4{p^2}{q^4}$ |
(v) | $a + b + c$ | $abc$ | ${a^2}bc + a{b^2}c + ab{c^2}$ |
3. Find the product.
i. $\left( {{a^2}} \right) \times \left( {2{a^{22}}} \right) \times \left( {4{a^{26}}} \right)$
Ans: The required product is,
$\left( {{a^2}} \right) \times \left( {2{a^{22}}} \right) \times \left( {4{a^{26}}} \right) = 2 \times 4 \times {a^2} \times {a^{22}} \times {a^{26}}$
$= 8{a^{50}}$
ii. $\left( {\dfrac{2}{3}xy} \right) \times \left( { - \dfrac{9}{{10}}{x^2}{y^2}} \right)$
Ans: The required product is,
$\left( {\dfrac{2}{3}x} \right) \times \left( { - \dfrac{9}{{10}}{x^2}{y^2}} \right) = \dfrac{2}{3} \times \left( { - \dfrac{9}{{10}}} \right) \times x \times {x^2} \times y \times {y^2}$
$= \left( { - \dfrac{3}{5}} \right) \times x \times {x^2} \times y \times {y^2}$
$= \left( { - \dfrac{3}{5}} \right){x^3}{y^3}$
iii. \[\left( { - \dfrac{{10}}{3}p{q^3}} \right) \times \left( {\dfrac{6}{5}{p^3}q} \right)\]
Ans: The required product is,
$\left( { - \dfrac{{10}}{3}p{q^3}} \right) \times \left( {\dfrac{6}{5}{p^3}q} \right) = - \dfrac{{10}}{3} \times \dfrac{6}{5} \times p \times {p^3} \times {q^3} \times q$
$= - 2 \times 2 \times {p^4} \times {q^4}$
$= - 4{p^4}{q^4}$
iv. $x \times {x^2} \times {x^3} \times {x^4}$
Ans: The required product is,
$ x \times {x^2} \times {x^3} \times {x^4} = {x^{1 + 2 + 3 + 4}}$
$= {x^{10}}$
4. Do as follows.
a. Simplify $3x\left( {4x - 5} \right) + 3$ and find its values for (i)$x = 3$, (ii) $x = \dfrac{1}{2}$.
Ans: Solve the expression, $3x\left( {4x - 5} \right) + 3$. Multiply the terms in the parenthesis with $3x$.
$3x\left( {4x - 5} \right) + 3 = 3x\left( {4x} \right) - 3x\left( 5 \right) + 3$
$= 12{x^2} - 15x + 3$
i. $x = 3$
Ans: Substitute $x$ as $3$ in $12{x^2} - 15x + 3$ and simplify.
$12{\left( 3 \right)^2} - 15\left( 3 \right) + 3 = 12\left( 9 \right) - 45 + 3$
$= 108 - 45 + 3$
$= 66$
ii. $x = \dfrac{1}{2}$
Ans: Substitute $x$ as $\dfrac{1}{2}$ in $12{x^2} - 15x + 3$ and simplify by taking LCM.
$12{\left( {\dfrac{1}{2}} \right)^2} - 15\left( {\dfrac{1}{2}} \right) + 3 = 12 \times \left( {\dfrac{1}{4}} \right) - \dfrac{{15}}{2} + 3$
$= 3 - \dfrac{{15}}{2} + 3$
$ = 6 - \dfrac{{15}}{2}$
$ = \dfrac{{12 - 15}}{2}$
$ = - \dfrac{3}{2}$
b. Simplify $a\left( {{a^2} + a + 1} \right) + 5$and find its values for the given values of $a$.
Ans: Solve the expression, $a\left( {{a^2} + a + 1} \right) + 5$. Multiply the terms in the parenthesis with $a$ and simplify.
$ a\left( {{a^2} + a + 1} \right) + 5 = a \times \left( {{a^2}} \right) + a \times a + a \times 1 + 5$
$= {a^3} + {a^2} + a + 5$
i. $a = 0$
Ans: Substitute $a$ as $0$ in ${a^3} + {a^2} + a + 5$ and simplify.
${a^3} + {a^2} + a + 5 = {\left( 0 \right)^3} + {\left( 0 \right)^2} + \left( 0 \right) + 5$
$= 5$
ii. $a = 1$
Ans: Substitute $a$ as $1$ in ${a^3} + {a^2} + a + 5$ and simplify.
${a^3} + {a^2} + a + 5 = {\left( 1 \right)^3} + {\left( 1 \right)^2} + \left( 1 \right) + 5$
$= 1 + 1 + 1 + 5$
$= 8$
iii. $a = - 1$
Ans: Substitute $a$ as $0$ in ${a^3} + {a^2} + a + 5$ and simplify.
${a^3} + {a^2} + a + 5 = {\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} + \left( { - 1} \right) + 5$
$= - 1 + 1 - 1 + 5$
$= 4$
5. Do as follows.
i. Add: $p\left( {p - q} \right)$,$q\left( {q - r} \right)$, and $r\left( {r - p} \right)$.
Ans: Simplify the first expression, $p\left( {p - q} \right) = {p^2} - pq$.
Simplify the second expression, $q\left( {q - r} \right) = {q^2} - qr$.
Simplify the third expression, $r\left( {r - p} \right) = {r^2} - rp$.
Add the three expressions obtained.
$\begin{array}{*{20}{c}} {}&{{p^2}}& - &{pq}&{}&{}&{}&{}&{}&{}&{}&{} \\ {}&{}&{}&{}& + &{{q^2}}& - &{qr}&{}&{}&{}&{} \\ + &{}&{}&{}&{}&{}&{}&{}& + &{{r^2}}& - &{pq} \\ \hline {}&{{p^2}}& - &{pq}& + &{{q^2}}& - &{qr}& + &{{r^2}}& - &{pq} \end{array}$
Hence, the the sum of the given expression is ${p^2} - pq + {q^2} - qr + {r^2} - pq$.
ii. Add: $2x\left( {z - x - y} \right)$ and $2y\left( {z - y - x} \right)$.
Ans: Simplify the first expression,$2x\left( {z - x - y} \right)$.
$2x\left( {z - x - y} \right) = 2x \times z - 2x \times x - 2x \times y$
$= 2xz - 2{x^2} - 2xy$
Simplify the second expression, $2y\left( {z - y - x} \right)$.
$2y\left( {z - y - x} \right) = 2y \times z - 2y \times y - 2y \times x$
$= 2yz - 2{y^2} - 2yx$
Now, add the two expressions obtained.
$\,\,2xz - 2{x^2} - 2xy \\ \underline {\left( + \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 2xy - 2{y^2} - 2yz} \\ 2xz - 2{x^2} - 4xy + 2yz - 2{y^2}$
Hence, the sum of the given expression is $2xz - 2{x^2} - 4xy + 2yz - 2{y^2}$.
iii. Subtract $3l\left( {l - 4m + 5n} \right)$ from $4l\left( {10n - 3m + 2l} \right)$.
Ans: Simplify the first expression, $3l\left( {l - 4m + 5n} \right)$.
$3l\left( {l - 4m + 5n} \right) = 3l \times l - 3l \times 4m + 3l \times 5n$
$= 3{l^2} - 12lm + 15\ln$
Simplify the second expression, $4l\left( {10n - 3m + 2l} \right)$.
$ 4l\left( {10n - 3m + 2l} \right) = 4l \times 10n - 4l \times 3m + 4l \times 2l$
$= 40\ln - 12lm + 8{l^2}$
Subtract the obtained expression.
$\,\,\,\,\,\,\,\,40\ln - 12lm + 8{l^2} \\ \underline {\left( - \right)15\ln - 12lm + 3{l^2}\,\,\,\,} \\ \,\,\,\,\,\,\,\,25\ln + 0 + \,\,\,\,\,\,5{l^2}$
The difference is $5{l^2} + 25\ln $.
iv. Subtract: $3a\left( {a + b + c} \right) - 2b\left( {a - b + c} \right)$ from $4c\left( { - a + b + c} \right)$.
Ans: Simplify the first expression, $3a\left( {a + b + c} \right) - 2b\left( {a - b + c} \right)$.
$3a\left( {a + b + c} \right) - 2b\left( {a - b + c} \right) = 3a \times \left( a \right) + 3a \times \left( b \right) + 3a \times \left( c \right) - 2b\left( a \right) + 2b\left( b \right) - 2b\left( c \right)$
$= 3{a^2} + 3ab + 3ac - 2ab + 2{b^2} - 2bc$
$= 3{a^2} + ab + 3ac + 2{b^2} - 2bc$
Simplify the second expression, $4c\left( { - a + b + c} \right)$.
$4c\left( { - a + b + c} \right) = 4c \times \left( { - a} \right) + 4c \times \left( b \right) + 4c \times c$
$= - 4ac + 4cb + 4{c^2}$
Subtract the obtained expression.
$\,\,\,\,\,\,\,\,-4ac + 4cb + 4{c^2} \\ \underline {\left( - \right)3ac - 2bc + 3{a^2} + 2{b^2} + ab \,\,\,\,} \\ \,\,\,- 7ac + 6bc + 4{c^2} - 3{a^2} - 2{b^2} - ab$
The simplified expression is, $ - 7ac + 6bc + 4{c^2} - 3{a^2} - 2{b^2} - ab$.
Conclusion
Exercise 8.3 Class 8 Solutions focuses on multiplying monomials by polynomials and binomials. This exercise has been instrumental in helping students understand and apply the distributive property to simplify algebraic expressions. By tackling problems in class 8 8.3 exercise that involved the multiplication of monomials with binomials and polynomials, students enhanced their ability to manipulate and simplify complex expressions.
Class 8 Maths Chapter 8: Exercises Breakdown
Exercise | Number of Questions |
2 Questions & solutions | |
5 Questions & solutions | |
3 Questions & solutions |
CBSE Class 8 Maths Chapter 8 Other Study Materials
S. No | Important Links for Chapter 8 Algebraic Expressions and Identities |
1 | Class 8 Algebraic Expressions and Identities Important Questions |
2 | |
3 | Class 8 Algebraic Expressions and Identities Important Formulas |
4 | Class 8 Algebraic Expressions and Identities NCERT Exemplar Solution |
5 | Class 8 Algebraic Expressions and Identities RD Sharma Solutions |
Chapter-Specific NCERT Solutions for Class 8 Maths
Given below are the chapter-wise NCERT Solutions for Class 8 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
S. No | NCERT Solutions Class 8 Maths Chapter-wise List |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Important Related Links for CBSE Class 8 Maths
S. No | Other Study Materials for CBSE Class 8 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |











