Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.2

ffImage
banner

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Exercise 2.2 - FREE PDF Download

The NCERT Class 9 Maths Chapter 2 Exercise 2.2 Solutions provides complete solutions to the problems in the Exercise. Chapter 2 of the Class 9 Maths syllabus is on Polynomials. It is a very important chapter that is covered in Ex 2.2 Class 9 and is divided into 8 major topics. Students are advised to learn from and practice the solved questions time and again to be able to master the concept of polynomials.

toc-symbolTable of Content
toggle-arrow
Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.2
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
Polynomials in One Shot | CBSE Class 9 Maths Chapter 2 | CBSE lX - One Shot | Vedantu Class 9 and 10
5.2K likes
112.3K Views
4 years ago
Vedantu 9&10
Subscribe
Download Notes
iconShare
Polynomials L-2 | Factor Theorem and Algebraic Identities | CBSE Class 9 Math - Umang 2021 | Vedantu
7K likes
137.5K Views
4 years ago

Access NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Exercise 2.2

Exercise 2.2

1. Find the value of the polynomial $\text{5x - 4}{{\text{x}}^{\text{2}}}\text{ + 3}$  at 

i) $\text{x = 0}$

Ans: Let $\text{p}\left( \text{x} \right)\text{ = 5x - 4}{{\text{x}}^{\text{2}}}\text{ + 3}$

We will simply put the value of $\text{x}$ in the given polynomial.

$\Rightarrow \text{p}\left( \text{0} \right)\text{ = 5}\left( \text{0} \right)\text{ - 4}\left( {{\text{0}}^{\text{2}}} \right)\text{ + 3}$

$\Rightarrow \text{p}\left( \text{0} \right)\text{ = 3}$

Hence, the value of the polynomial at $\text{x = 0}$ is $\text{3}$.

ii) $\text{x = -1}$ 

Ans: Let $\text{p}\left( \text{x} \right)\text{ = 5x - 4}{{\text{x}}^{\text{2}}}\text{ + 3}$

We will simply put the value of $\text{x}$ in the given polynomial.

$\Rightarrow \text{p}\left( \text{-1} \right)\text{ = 5}\left( \text{-1} \right)\text{ - 4}\left[ {{\left( \text{-1} \right)}^{\text{2}}} \right]\text{ + 3}$

$\Rightarrow \text{p}\left( \text{-1} \right)\text{ = - 5 - 4 + 3}$

$\Rightarrow \text{p}\left( \text{-1} \right)\text{ = - 6}$

Hence, the value of the polynomial at $\text{x = -1}$ is $\text{-6}$.

iii) $\text{x = 2}$ 

Ans: Let $\text{p}\left( \text{x} \right)\text{ = 5x - 4}{{\text{x}}^{\text{2}}}\text{ + 3}$

We will simply put the value of $\text{x}$ in the given polynomial.

$\Rightarrow \text{p}\left( \text{2} \right)\text{ = 5}\left( \text{2} \right)\text{ - 4}\left( {{\text{2}}^{\text{2}}} \right)\text{ + 3}$

$\Rightarrow \text{p}\left( \text{2} \right)\text{ = 10 - 16 + 3}$

$\Rightarrow \text{p}\left( \text{2} \right)\text{ = - 3}$

Hence, the value of the polynomial at $\text{x = 2}$ is $\text{-3}$.


2. Find $\text{p}\left( \text{0} \right)$, $\text{p}\left( \text{1} \right)$  and $\text{p}\left( \text{2} \right)$  for each of the following polynomials:

i) $\text{p}\left( \text{y} \right)\text{ = }{{\text{y}}^{\text{2}}}\text{ - y + 1}$ 

Ans:

  • $\text{p}\left( \text{0} \right)\text{ = }{{\text{0}}^{\text{2}}}\text{ - 0 + 1}$.

So, we get the value of $\text{p}\left( \text{0} \right)\text{ = 1}$.

  • $\text{p}\left( \text{1} \right)\text{ = }{{\text{1}}^{\text{2}}}\text{ - 1 + 1 = 1}$

So, we get the value of $\text{p}\left( \text{1} \right)\text{ = 1}$.

  • $\text{p}\left( \text{2} \right)\text{ = }{{\text{2}}^{\text{2}}}\text{ - 2 + 1}$

$\Rightarrow \text{p}\left( \text{2} \right)\text{ = 4 - 2 + 1}$

$\Rightarrow \text{p}\left( \text{2} \right)\text{ = 3}$

So, we get the value of $\text{p}\left( \text{2} \right)\text{ = 3}$.

ii) $\text{p}\left( \text{t} \right)\text{ = 2 + t + 2}{{\text{t}}^{\text{2}}}\text{ - }{{\text{t}}^{\text{3}}}$

Ans:

  • $\text{p}\left( \text{0} \right)\text{ = 2 + 0 + 2}\left( {{\text{0}}^{\text{2}}} \right)\text{ - }\left( {{\text{0}}^{\text{3}}} \right)\text{ = 2}$

So, we get the value of $\text{p}\left( \text{0} \right)\text{ = 2}$.

  • $\text{p}\left( \text{1} \right)\text{ = 2 + 1 + 2}\left( {{\text{1}}^{\text{2}}} \right)\text{ - }\left( {{\text{1}}^{\text{3}}} \right)\text{ = 4}$

So, we get the value of $\text{p}\left( \text{1} \right)\text{ = 4}$.

  • $\text{p}\left( \text{2} \right)\text{ = 2 + 2 + 2}\left( {{\text{2}}^{\text{2}}} \right)\text{ - }\left( {{\text{2}}^{\text{3}}} \right)$

$\Rightarrow \text{p}\left( \text{2} \right)\text{ = 4 + 8 - 8}$

$\Rightarrow \text{p}\left( \text{2} \right)\text{ = 4}$

So, we get the value of $\text{p}\left( \text{2} \right)\text{ = 4}$.

iii) $\text{p}\left( \text{x} \right)\text{ = }{{\text{x}}^{\text{3}}}$

Ans:

  • $\text{p}\left( \text{0} \right)\text{ = }{{\text{0}}^{\text{3}}}\text{ = 0}$

So, we get the value of $\text{p}\left( \text{0} \right)\text{ = 0}$.

  • $\text{p}\left( \text{1} \right)\text{ = }{{\text{1}}^{\text{3}}}\text{ = 1}$

So, we get the value of $\text{p}\left( \text{1} \right)\text{ = 1}$.

  • $\text{p}\left( \text{2} \right)\text{ = }{{\text{2}}^{\text{3}}}\text{ = 8}$

So, we get the value of $\text{p}\left( \text{2} \right)\text{ = 8}$.

iv) $\text{p}\left( \text{x} \right)\text{ =}\left( \text{x - 1} \right)\left( \text{x + 1} \right)$

Ans:

  • $\text{p}\left( \text{0} \right)\text{ =}\left( \text{0 - 1} \right)\left( \text{0 + 1} \right)\text{ = -1}$

So, we get the value of $\text{p}\left( \text{0} \right)\text{ = -1}$.

  • $\text{p}\left( \text{1} \right)\text{ =}\left( \text{1 - 1} \right)\left( \text{1 + 1} \right)\text{ = 0}$

So, we get the value of $\text{p}\left( \text{1} \right)\text{ = 0}$.

  • $\text{p}\left( \text{2} \right)\text{ =}\left( \text{2 - 1} \right)\left( \text{2 + 1} \right)$

$\Rightarrow \text{p}\left( \text{2} \right)\text{ = }\left( \text{1} \right)\left( \text{3} \right)\text{ = 3}$

So, we get the value of $\text{p}\left( \text{2} \right)\text{ = 3}$.


3. Verify whether the following are zeroes of the polynomial, indicated against them.

i) $\text{p}\left( \text{x} \right)\text{ = 3x + 1}$,$\text{x = -}\frac{\text{1}}{\text{3}}$

Ans: We are given: $\text{x = -}\frac{\text{1}}{\text{3}}$. If it is the zero of the polynomial $\text{p}\left( \text{x} \right)\text{ = 3x + 1}$, then $\text{p}\left( \text{-}\frac{\text{1}}{\text{3}} \right)$ should be  $\text{0}$.

$\text{p}\left(\text{-}\frac{\text{1}}{\text{3}}\right)\text{=3}\left(\text{-}\frac{\text{1}}{\text{3}} \right)\text{ + 1 = -1 + 1 = 0}$

Hence, we can say that $\text{x = -}\frac{\text{1}}{\text{3}}$ is a zero of the given polynomial.

ii) $\text{p}\left( \text{x} \right)\text{= 5x - }\!\!\pi\!\!\text{ }$ ,$\text{x = }\frac{\text{4}}{\text{5}}$

Ans: We are given: $\text{x = }\frac{\text{4}}{\text{5}}$. If it is the zero of the polynomial $\text{p}\left( \text{x} \right)\text{ = 5x -  }\text{ }\!\!\pi\!\!\text{ }$, then $\text{p}\left( \frac{\text{4}}{\text{5}} \right)$ should be  $\text{0}$.

$\text{p}\left( \frac{\text{4}}{\text{5}} \right)\text{ = 5}\left( \frac{\text{4}}{\text{5}} \right)\text{ - 3}\text{.14 = 4 - 3}\text{.14 }\ne \text{ 0}$

Hence, we can say that $\text{x = }\frac{\text{4}}{\text{5}}$ is not a zero of the given polynomial.

iii) $\text{p(x) = }{{\text{x}}^{\text{2}}}\text{-1, x = 1, -1}$

Ans: We are given: $\text{x = 1}$  and  $\text{x = -1}$ . 

If they are zeros of polynomial  $\text{p(x) = }{{\text{x}}^{\text{2}}}\text{-1}$ , then $\text{p}\left( \text{1} \right)$ and $\text{p}\left( \text{-1} \right)$ should both be $\text{0}$.

$\text{p}\left( \text{1} \right)\text{ = }{{\left( \text{1} \right)}^{\text{2}}}\text{-1 = 0}$

$\text{p}\left( \text{-1} \right)\text{ = }{{\left( \text{-1} \right)}^{\text{2}}}\text{-1 = 0}$

Hence, we can say that $\text{x = 1}$ and $\text{x = -1}$  are zeroes of the given polynomial.

iv) $\text{p(x) = (x+1)(x-2), x = -1, 2}$

Ans: We are given: $\text{x = -1}$ and $\text{x = 2}$. 

If they are zeroes of the polynomial $\text{p}\left( \text{x} \right)\text{ = }\left( \text{x+1} \right)\left( \text{x-2} \right)$ , then $\text{p}\left( \text{-1} \right)$ and $\text{p}\left( \text{2} \right)$ should be $\text{0}$.

$\text{p}\left( \text{-1} \right)\text{ = }\left( \text{-1+1} \right)\left( \text{-1-2} \right)\text{ = }\left( \text{0} \right)\left( \text{-3} \right)\text{ = 0}$

$\text{p}\left( \text{2} \right)\text{ = }\left( \text{2+1} \right)\left( \text{2-2} \right)\text{ = }\left( \text{3} \right)\left( \text{0} \right)\text{ = 0}$

Hence, we can say that $\text{x = -1}$ and $\text{x = 2}$  are zeroes of the given polynomial.

v) $\text{p(x) = }{{\text{x}}^{\text{2}}}\text{, x = 0}$

Ans: We are given $\text{x = 0}$. 

If it is a zero of the polynomial $\text{p}\left( \text{x} \right)\text{ = }{{\text{x}}^{\text{2}}}$  , then $\text{p}\left( \text{0} \right)$ should be $\text{0}$.

$\text{ p}\left( \text{0} \right)\text{ = }{{\left( \text{0} \right)}^{\text{2}}}\text{ = 0}$

Hence, we can say that $\text{x = 0}$ is a zero of the given polynomial.

vi) $\text{p(x) = lx + m, x = -}\frac{\text{m}}{\text{l}}$

Ans: We are given: $\text{x = -}\frac{\text{m}}{\text{l}}$. 

If it is a zero of the polynomial  $\text{p}\left( \text{x} \right)\text{ = lx + m}$ , then $\text{p}\left( \text{-}\frac{\text{m}}{\text{l}} \right)$ should be  $\text{0}$ .

Here, $\text{p}\left( \text{-}\frac{\text{m}}{\text{l}} \right)\text{ = l}\left( \text{-}\frac{\text{m}}{\text{l}} \right)\text{ + m = -m + m = 0}$

Hence, we can say that $\text{x = -}\frac{\text{m}}{\text{l}}$  is a zero of the given polynomial.

vii)$\text{p(x)=3}{{\text{x}}^{\text{2}}}\text{-1,x=-}\frac{\text{1}}{\sqrt{\text{3}}}\text{,}\frac{\text{2}}{\sqrt{\text{3}}}$

Ans: We are given:$\text{x = }\frac{\text{-1}}{\sqrt{\text{3}}}$  and  $\text{x = }\frac{\text{2}}{\sqrt{\text{3}}}$. 

If they are zeroes of the polynomial $\text{p}\left( \text{x} \right)\text{ = 3}{{\text{x}}^{\text{2}}}\text{-1}$, then $\text{p}\left( \frac{\text{-1}}{\sqrt{\text{3}}} \right)$and $\text{p}\left( \frac{\text{2}}{\sqrt{\text{3}}} \right)$   should be $\text{0}$ .

$\text{p}\left( \frac{\text{-1}}{\sqrt{\text{3}}} \right)\text{ = 3}{{\left( \frac{\text{-1}}{\sqrt{\text{3}}} \right)}^{\text{2}}}\text{-1 = 3}\left( \frac{\text{1}}{\text{3}} \right)\text{-1 = 1-1 = 0}$

$\text{p}\left( \frac{\text{2}}{\sqrt{\text{3}}} \right)\text{ = 3}{{\left( \frac{\text{2}}{\sqrt{\text{3}}} \right)}^{\text{2}}}\text{-1 = 3}\left( \frac{\text{4}}{\text{3}} \right)\text{-1 = 4-1 = 3}$

Hence, we can say that $\text{x = }\frac{\text{-1}}{\sqrt{\text{3}}}$ is a zero of the given polynomial.

However, the value of $\text{x = }\frac{\text{2}}{\sqrt{\text{3}}}$ is not a zero of the given polynomial.

viii) $\text{p(x) = 2x+1, x = }\frac{\text{1}}{\text{2}}$

Ans: We are given: $\text{x = }\frac{\text{1}}{\text{2}}$. 

If it is a zero of polynomial $\text{p}\left( \text{x} \right)\text{ = 2x+1}$ , then $\text{p}\left( \frac{\text{1}}{\text{2}} \right)$ should be $\text{0}$

Here, $\text{p}\left( \frac{\text{1}}{\text{2}} \right)\text{ = 2}\left( \frac{\text{1}}{\text{2}} \right)\text{+1 = 1+1 = 2}$.

So, we get the value $\text{p}\left( \frac{\text{1}}{\text{2}} \right)\ne \text{0}$  .

Hence, we can say that $\text{x = }\frac{\text{1}}{\text{2}}$ is not a zero of the given polynomial.


4. Find the zero of the polynomial in each of the following cases:

i) $\text{p}\left( \text{x} \right)\text{ = x+5}$

Ans:  If $\text{x}$ is zero of the polynomial, then we can say that $\text{p}\left( \text{x} \right)\text{ = 0}$.

Let $\text{p}\left( \text{x} \right)\text{ = 0}$

$\Rightarrow \text{x+5 = 0}$

$\Rightarrow \text{x = -5}$

Therefore, $\text{x = -5}$ is a zero of the given polynomial.

ii) $\text{p}\left( \text{x} \right)\text{ = x-5}$ 

Ans:  If $\text{x}$ is zero of the polynomial, then we can say that $\text{p}\left( \text{x} \right)\text{ = 0}$.

Let $\text{p}\left( \text{x} \right)\text{ = 0}$

$\Rightarrow \text{x-5 = 0}$

$\Rightarrow \text{x = 5}$

Therefore, $\text{x = 5}$ is a zero of the given polynomial.

iii) $\text{p}\left( \text{x} \right)\text{ = 2x+5}$

Ans:  If $\text{x}$ is zero of the polynomial, then we can say that $\text{p}\left( \text{x} \right)\text{ = 0}$.

Let $\text{p}\left( \text{x} \right)\text{ = 0}$

$\Rightarrow \text{2x+5 = 0}$

$\Rightarrow \text{x = -}\frac{\text{5}}{\text{2}}$

Therefore, $\text{x = -}\frac{\text{5}}{\text{2}}$ is a zero of the given polynomial.

iv) $\text{p}\left( \text{x} \right)\text{ = 3x-2}$

Ans:  If $\text{x}$ is zero of the polynomial, then we can say that $\text{p}\left( \text{x} \right)\text{ = 0}$.

Let $\text{p}\left( \text{x} \right)\text{ = 0}$

$\Rightarrow \text{3x-2 = 0}$

$\Rightarrow \text{x = }\frac{\text{2}}{\text{3}}$

Therefore, $\text{x = }\frac{\text{2}}{\text{3}}$  is a zero of the given polynomial.

v) $\text{p}\left( \text{x} \right)\text{ = 3x}$

Ans:  If $\text{x}$ is zero of the polynomial, then we can say that $\text{p}\left( \text{x} \right)\text{ = 0}$.

Let $\text{p}\left( \text{x} \right)\text{ = 0}$

$\Rightarrow \text{3x = 0}$

$\Rightarrow \text{x = 0}$

Therefore, $\text{x = 0}$ is a zero of the given polynomial.

vi) $\text{p}\left( \text{x} \right)\text{ = ax, a}\ne \text{0}$

Ans:  If $\text{x}$ is zero of the polynomial, then we can say that $\text{p}\left( \text{x} \right)\text{ = 0}$.

Let $\text{p}\left( \text{x} \right)\text{ = 0}$

$\Rightarrow \text{ax = 0}$

It is also given that $\text{a}$ is non-zero. 

$\Rightarrow \text{x = 0}$

Therefore, $\text{x = 0}$ is a zero of the given polynomial.

vii) $\text{p}\left( \text{x} \right)\text{ = cx+d, c}\ne \text{0, c, d}$ are real numbers.

Ans:  If $\text{x}$ is zero of the polynomial, then we can say that $\text{p}\left( \text{x} \right)\text{ = 0}$.

Let $\text{p}\left( \text{x} \right)\text{ = 0}$

$\Rightarrow \text{cx+d = 0}$

It is also given that $\text{c}$ is non-zero.

$\Rightarrow \text{x = -}\frac{\text{d}}{\text{c}}$

Therefore, $\text{x = -}\frac{\text{d}}{\text{c}}$  is a zero of the given polynomial.


Conclusion

The NCERT Solutions for Class 9th Maths Chapter 2 Exercise 2.2 primarily focuses on enhancing the understanding of polynomial expressions, their evaluation, zeros, and factorization. Ex 2.2 Class 9 is crucial for building a solid foundation in algebraic techniques, which are essential for higher mathematical learning. Students should pay particular attention to how to evaluate polynomials for given values, determine and verify the zeros of polynomials, and apply algebraic identities in the factorization process. The solutions provided, such as those by Vedantu, are designed to guide students step-by-step through each problem, ensuring a thorough grasp of concepts and methods.


Class 9 Maths Chapter 2: Exercises Breakdown

Exercises

Number of Questions

Exercise 2.1

5 Questions and Solutions

Exercise 2.3

5 Questions and Solutions

Exercise 2.4

16 Questions and Solutions



CBSE Class 9 Maths Chapter 2 Other Study Materials



Chapter-Specific NCERT Solutions for Class 9 Maths

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Study Materials for CBSE Class 9 Maths

WhatsApp Banner
Best Seller - Grade 11 - JEE
View More>
Previous
Next

FAQs on NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.2

1. Where can I find stepwise NCERT Solutions for Class 9 Maths Chapter 2 Polynomials, including Exercise 2.1 to 2.5, in PDF format?

Stepwise NCERT Solutions for Class 9 Maths Chapter 2 Polynomials (Exercises 2.1 to 2.5) following the updated CBSE 2025–26 pattern are available in PDF format on Vedantu. Each solution is structured as per the official NCERT textbook answer format and covers every question with clear, logical steps for complete conceptual clarity.

2. How do I solve Exercise 2.2 of Polynomials using the correct NCERT method?

To solve Exercise 2.2 of Class 9 Maths Chapter 2, follow the NCERT approach: identify the type of polynomial, classify it as per degree or terms, and give reasoning as required for each answer. Use a stepwise method, as shown in the textbook, to ensure your answers match the CBSE-approved solution format.

3. Are the solutions for Class 9 Maths Chapter 2 Exercise 2.5 CBSE approved and aligned with the latest NCERT textbook?

Yes, the solutions provided for Class 9 Maths Chapter 2 Exercise 2.5 are prepared strictly according to the latest CBSE 2025–26 syllabus and are fully aligned with the official NCERT textbook. Each answer uses the prescribed format and methodology for stepwise explanation.

4. Can I access NCERT Solutions for Class 9 Maths Chapter 2 exercises in Hindi medium for Exercise 2.2 and 2.3?

Yes, NCERT Solutions for Class 9 Maths Chapter 2 Exercises 2.2 and 2.3 are also available in Hindi medium, following the NCERT answer pattern. These explanations use simple language and CBSE-approved methods to solve every question in the required Hindi structure.

5. What is the correct way to write answers for Exercise 2.3 of Polynomials as per NCERT guidelines?

For Exercise 2.3 of Polynomials, answers should be written in stepwise order: mention the formula or concept used, show all calculations, clearly state your reasoning, and finish with the correct answer. Present your solution as per the latest NCERT and CBSE guidelines for 2025–26.

6. What are the key steps for solving Exercise 2.4 in Class 9 Maths Chapter 2 NCERT Solutions?

The key steps for solving Exercise 2.4 in Class 9 Maths Chapter 2 are: (i) Identify the relationship between zeros and coefficients, (ii) Substitute the values as per the question, and (iii) Write all steps clearly for full marks, as shown in the stepwise NCERT solution.

7. Where can I find correct answers for all textbook and intext questions in Class 9 Maths Chapter 2 (Polynomials)?

You can find correct answers for all textbook and intext questions of Class 9 Maths Chapter 2 (Polynomials) in Vedantu's NCERT Solutions, which include detailed solutions for each exercise and follow the official CBSE 2025–26 NCERT pattern for stepwise explanation.

8. Are the Class 9 Maths Chapter 2 solutions provided on Tiwari Academy and Vedantu identical in terms of NCERT answer format?

Both Tiwari Academy and Vedantu provide solutions based on the NCERT answer format, but Vedantu's NCERT Solutions are updated for the 2025–26 CBSE syllabus, ensuring the latest official structure and stepwise explanations are included as per current NCERT guidelines.

9. How to verify if my answer matches the NCERT stepwise solution for Exercise 2.1 in Class 9 Maths Chapter 2?

To verify your answer for Exercise 2.1, compare each step of your solution with the official NCERT stepwise method, ensuring you classify polynomials and show calculations as per the textbook. The final answer and explanation should align with the format used in CBSE approved solutions.

10. If a question in Polynomials Class 9 Chapter 2 asks for "all types of polynomials," what is the NCERT answer format?

If asked about all types of polynomials, the NCERT answer format requires: naming each type (zero, linear, quadratic, cubic, etc.), specifying their degree and form, providing relevant examples, and presenting the explanation stepwise as per CBSE 2025–26 guidelines.

11. What should I do if my solution to a polynomial question does not match the official NCERT answer?

If your solution does not match the official NCERT answer, recheck each step according to the prescribed CBSE method: confirm your understanding of the concept, calculations, and answer structure. Use Vedantu's NCERT Solutions to clarify the stepwise approach and avoid calculation mistakes.

12. How are zeros of a polynomial identified in CBSE Class 9 Maths Chapter 2 NCERT Solutions?

Zeros of a polynomial are identified by substituting different values of the variable into the polynomial and checking where the polynomial equals zero. In NCERT Solutions, each calculation and substitution is written stepwise, highlighting which value makes the expression zero, following CBSE 2025–26 format.

13. How can I ensure all steps are included in my answers for Polynomials as per NCERT?

To ensure all steps are included, write your solution sequentially: (1) State the formula or concept, (2) Show all substitutions and calculations, (3) Add reasoning or explanations, and (4) Box/underline the final answer, just as in the stepwise NCERT Solutions for Class 9 Maths Chapter 2.