Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4

ffImage
banner

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Exercise 2.4 - FREE PDF Download

Vedantu provides the free PDF of NCERT Class 9 Maths Ex 2.4 Chapter 2 Polynomials. This exercise contains all the solutions to the questions given at the back of the CBSE textbook. NCERT Solutions for Class 9 Maths and the reference notes of class 9 ex 2.4 are developed by the subject matter expert from Vedantu as per the NCERT (CBSE) latest guidelines. These solutions will help you to revise the chapter thoroughly and score good marks in exams. The NCERT class 9 maths chapter 2 exercise 2.4 solutions are 100% accurate, and you can verify your answers with them. If you have any doubts relating to the topic, then you can reach out to our experienced teachers for clarification. You can register with Vedantu for one to one interaction with our experts.

toc-symbolTable of Content
toggle-arrow
Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
Polynomials in One Shot | CBSE Class 9 Maths Chapter 2 | CBSE lX - One Shot | Vedantu Class 9 and 10
5.2K likes
112.3K Views
4 years ago
Vedantu 9&10
Subscribe
Download Notes
iconShare
Polynomials L-2 | Factor Theorem and Algebraic Identities | CBSE Class 9 Math - Umang 2021 | Vedantu
7K likes
137.5K Views
4 years ago

Access NCERT Solutions for Maths Class 9 Chapter 2 Polynomials Exercise 2.4

1. Use suitable identities to find the following products:

  1. (x+4)(x+10)

Ans: Using the identity, \[\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab\]

Here we have, \[a=4,b=10\]

We get,
\[ \left( x+4 \right)\left( x+10 \right)={{x}^{2}}+\left( 4+10 \right)x+\left( 4 \right)\left( 10 \right) \]

\[ ={{x}^{2}}+14x+40 \]


  1. (x+8)(x-10)

Ans: Using the identity, \[\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab\]

Here we have, \[a=8,b=-10\]

We get,
$ \left( x+8 \right)\left( x+\left( -10 \right) \right)={{x}^{2}}+\left( 8+\left( -10 \right) \right)x+\left( 8 \right)\left( -10 \right) $

 $ \left( x+8 \right)\left( x-10 \right)={{x}^{2}}+\left( 8-10 \right)x-80 $

 $ ={{x}^{2}}-2x-80 $


  1. ( 3x+4)( 3x-5)

Ans: Using the identity, \[\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab\]

Here we have, \[a=4,b=-5\]

We get,
$ \left( 3x+4 \right)\left( 3x+\left( -5 \right) \right)={{\left( 3x \right)}^{2}}+\left( 4+\left( -5 \right) \right)3x+\left( 4 \right)\left( -5 \right) $

$ \left( 3x+4 \right)\left( 3x-5 \right)=9{{x}^{2}}+\left( 4-5 \right)3x-20 $

$ =9{{x}^{2}}-3x-20 $


  1. $\mathbf{(y^{2}+\frac{3}{2})(y^{2}-\frac{3}{2})}$

Ans: Using the identity, \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\]

Here we have, \[x={{y}^{2}},y=\dfrac{3}{2}\]

We get,
$ \left( {{y}^{2}}+\dfrac{3}{2} \right)\left( {{y}^{2}}-\dfrac{3}{2} \right)={{\left( {{y}^{2}} \right)}^{2}}-{{\left( \dfrac{3}{2} \right)}^{2}} $

$  ={{y}^{4}}-\dfrac{9}{4} $


  1. (3-2x)(3+2x)

Ans: Using the identity, \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\]

Here we have, \[x=3,y=2x\]

We get,
$ \left( 3+2x \right)\left( 3-2x \right)={{\left( 3 \right)}^{2}}-{{\left( 2x \right)}^{2}} $

$  =9-4{{x}^{2}} $ 


2. Evaluate the following products without multiplying directly:

  1. \[\mathbf{103\times 107}\]

Ans: \[103\times 107=\left( 100+3 \right)\times \left( 100+7 \right)\]

By using the identity, \[\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab\]

Here we have, \[x=100,~~a=3,~~b=7\]

We get,

$ \left( 100+3 \right)\left( 100+7 \right)={{\left( 100 \right)}^{2}}+\left( 3+7 \right)100+\left( 3 \right)\left( 7 \right) $

$ \left( 103 \right)\times \left( 107 \right)=10000+1000+21 $

$ =11021 $


  1. \[\mathbf{95\times 96}\]

Ans: \[95\times 96=\left( 100-5 \right)\times \left( 100-4 \right)\]

By using the identity, \[\left( x-a \right)\left( x-b \right)={{x}^{2}}-\left( a+b \right)x+ab\]

Here we have, \[x=100,~~a=5,~~b=4\]

We get,
$ \left( 100-5 \right)\left( 100-4 \right)={{\left( 100 \right)}^{2}}-\left( 5+4 \right)100+\left( 5 \right)\left( 4 \right) $

$ \left( 95 \right)\times \left( 96 \right)=10000-900+20 $

$ =9120 $


  1. \[\mathbf{104\times 96}\]

Ans: \[104\times 96=\left( 100+4 \right)\times \left( 100-4 \right)\]

By using the identity, \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\]

Here we have, \[x=100,~~y=4\]

We get,
$\left( 100+4 \right)\left( 100-4 \right)={{\left( 100 \right)}^{2}}-{{\left( 4 \right)}^{2}} $

$ \left( 104 \right)\times \left( 96 \right)=10000-16 $

$ =9984 $


3. Factorize the following using appropriate identities:

  1. \[\mathbf{9{{x}^{2}}+6xy+{{y}^{2}}}\]

Ans: \[9{{x}^{2}}+6xy+{{y}^{2}}={{\left( 3x \right)}^{2}}+2\left( 3x \right)\left( y \right)+{{\left( y \right)}^{2}}\]

By using the identity, \[{{x}^{2}}+2xy+{{y}^{2}}={{\left( x+y \right)}^{2}}\]

Here, \[x=3x,~~y=y\]

$ 9{{x}^{2}}+6xy+{{y}^{2}}={{\left( 3x \right)}^{2}}+2\left( 3x \right)\left( y \right)+{{\left( y \right)}^{2}} $

$ ={{\left( 3x+y \right)}^{2}} $

$ =\left( 3x+y \right)\left( 3x+y \right) $


  1. \[\mathbf{4{{y}^{2}}-4y+1}\]

Ans: \[4{{y}^{2}}-4y+1={{\left( 2y \right)}^{2}}-2\left( 2y \right)\left( 1 \right)+{{\left( 1 \right)}^{2}}\]

By using the identity, \[{{x}^{2}}-2xy+{{y}^{2}}={{\left( x-y \right)}^{2}}\]

Here, \[x=2y,~~y=1\]

$ 4{{y}^{2}}-4y+1={{\left( 2y \right)}^{2}}-2\left( 2y \right)\left( 1 \right)+{{\left( 1 \right)}^{2}} $ 

$ ={{\left( 2y-1 \right)}^{2}} $

$ =\left( 2y-1 \right)\left( 2y-1 \right) $


  1. \[\mathbf{{{x}^{2}}-\dfrac{{{y}^{2}}}{100}}\]

Ans: \[{{x}^{2}}-\dfrac{{{y}^{2}}}{100}={{\left( x \right)}^{2}}-{{\left( \dfrac{y}{10} \right)}^{2}}\]

By using the identity, \[{{x}^{2}}-{{y}^{2}}=\left( x+y \right)\left( x-y \right)\]

Here, \[x=x,~~y=\dfrac{y}{10}\]

$ {{x}^{2}}-\dfrac{{{y}^{2}}}{100}={{\left( x \right)}^{2}}-{{\left( \dfrac{y}{10} \right)}^{2}} $

$ =\left( x-\dfrac{y}{10} \right)\left( x+\dfrac{y}{10} \right) $


4. Expand each of the following, using suitable identities:

  1. \[\mathbf{{{\left( x+2y+4z \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=x,~~y=2y,~~z=4z\]

$ {{\left( x+2y+4z \right)}^{2}}={{\left( x \right)}^{2}}+{{\left( 2y \right)}^{2}}+{{\left( 4z \right)}^{2}}+2\left( x \right)\left( 2y \right)+2\left( 2y \right)\left( 4z \right)+2\left( 4z \right)\left( x \right) $

$={{x}^{2}}+4{{y}^{2}}+16{{z}^{2}}+4xy+16yz+8xz $


  1. \[\mathbf{{{\left( 2x-y+z \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=2x,~~y=-y,~~z=z\]

$ {{\left( 2x-y+z \right)}^{2}}={{\left( 2x \right)}^{2}}+{{\left( -y \right)}^{2}}+{{\left( z \right)}^{2}}+2\left( 2x \right)\left( -y \right)+2\left( -y \right)\left( z \right)+2\left( z \right)\left( 2x \right) $

 $ =4{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4xy-2yz+4xz $


  1. \[\mathbf{{{\left( -2x+3y+2z \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=-2x,~~y=3y,~~z=2z\]

$ {{\left( -2x+3y+2z \right)}^{2}}={{\left( -2x \right)}^{2}}+{{\left( 3y \right)}^{2}}+{{\left( 2z \right)}^{2}}+2\left( -2x \right)\left( 3y \right)+2\left( 3y \right)\left( 2z \right)+2\left( 2z \right)\left( -2x \right) $

$  =4{{x}^{2}}+9{{y}^{2}}+4{{z}^{2}}-12xy+12yz-8xz $


  1. \[\mathbf{{{\left( 3a-7b-c \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=3a,~~y=-7b,~~z=-c\]

$ {{\left( 3a-7b-c \right)}^{2}}={{\left( 3a \right)}^{2}}+{{\left( -7b \right)}^{2}}+{{\left( -c \right)}^{2}}+2\left( 3a \right)\left( -7b \right)+2\left( -7b \right)\left( -c \right)+2\left( -c \right)\left( 3a \right) $

$ =9{{a}^{2}}+49{{b}^{2}}+{{c}^{2}}-42ab+14bc-6ca $


  1. \[\mathbf{{{\left( -2x+5y-3z \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=-2x,~~y=5y,~~z=-3z\]

$ {{\left( -2x+5y-3z \right)}^{2}}={{\left( -2x \right)}^{2}}+{{\left( 5y \right)}^{2}}+{{\left( -3z \right)}^{2}}+2\left( -2x \right)\left( 5y \right)+2\left( 5y \right)\left( -3z \right)+2\left( -3z \right)\left( -2x \right) $

$  =4{{x}^{2}}+25{{y}^{2}}+9{{z}^{2}}-20xy-30yz+12xz $


  1. \[\mathbf{{{\left( \dfrac{1}{4}a-\dfrac{1}{2}b+1 \right)}^{2}}}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

Here, \[x=\dfrac{1}{4}a,~~y=-\dfrac{1}{2}b,~~z=1\]

$ {{\left( \dfrac{1}{4}a-\dfrac{1}{2}b+1 \right)}^{2}}={{\left( \dfrac{1}{4}a \right)}^{2}}+{{\left( -\dfrac{1}{2}b \right)}^{2}}+{{\left( 1 \right)}^{2}}+2\left( \dfrac{1}{4}a \right)\left( -\dfrac{1}{2}b \right)+2\left( -\dfrac{1}{2}b \right)\left( 1 \right)+2\left( 1 \right)\left( \dfrac{1}{4}a \right) $

$ =\dfrac{1}{16}{{a}^{2}}+\dfrac{1}{4}{{b}^{2}}+1-\dfrac{1}{4}ab-b+\dfrac{1}{2}a $


5. Factorise:

  1. \[\mathbf{4{{x}^{2}}+9{{y}^{2}}+16{{z}^{2}}+12xy-24yz-16xz}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

We can see that, \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx={{\left( x+y+z \right)}^{2}}\]

$ 4{{x}^{2}}+9{{y}^{2}}+16{{z}^{2}}+12xy-24yz-16xz={{\left( 2x \right)}^{2}}+{{\left( 3y \right)}^{2}}+{{\left( -4z \right)}^{2}}+2\left( 2x \right)\left( 3y \right)+2\left( 3y \right)\left( -4z \right)+2\left( -4z \right)\left( 2x \right) $

$ ={{\left( 2x+3y-4z \right)}^{2}} $

$ =\left( 2x+3y-4z \right)\left( 2x+3y-4z \right) $


  1. \[\mathbf{2{{x}^{2}}+{{y}^{2}}+8{{z}^{2}}-2\sqrt{2}xy+4\sqrt{2}yz-8xz}\]

Ans: By using the identity, \[{{\left( x+y+z \right)}^{2}}={{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx\]

We can see that, \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy+2yz+2zx={{\left( x+y+z \right)}^{2}}\]

$ 2{{x}^{2}}+{{y}^{2}}+8{{z}^{2}}-2\sqrt{2}xy+4\sqrt{2}yz-8xz={{\left( -\sqrt{2}x \right)}^{2}}+{{\left( y \right)}^{2}}+{{\left( 2\sqrt{2}z \right)}^{2}}+2\left( -\sqrt{2}x \right)\left( y \right)+2\left( y \right)\left( 2\sqrt{2}z \right)+2\left( 2\sqrt{2}z \right)\left( -\sqrt{2}x \right) $

$ ={{\left( -\sqrt{2}x+y-2\sqrt{2}z \right)}^{2}} $

$ =\left( -\sqrt{2}x+y-2\sqrt{2}z \right)\left( -\sqrt{2}x+y-2\sqrt{2}z \right) $


6. Write the following cubes in expanded form:

  1. \[\mathbf{{{\left( 2x+1 \right)}^{3}}}\]

Ans: By using the identity, \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]

$ {{\left( 2x+1 \right)}^{3}}={{\left( 2x \right)}^{3}}+{{\left( 1 \right)}^{3}}+3\left( 2x \right)\left( 1 \right)\left( 2x+1 \right) $

$ =8{{x}^{3}}+1+6x\left( 2x+1 \right) $

$ =8{{x}^{3}}+1+12{{x}^{2}}+6x $

$ =8{{x}^{3}}+12{{x}^{2}}+6x+1 $


  1. \[\mathbf{{{\left( 2a-3b \right)}^{3}}}\]

Ans: By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

$ {{\left( 2a-3b \right)}^{3}}={{\left( 2a \right)}^{3}}-{{\left( 3b \right)}^{3}}-3\left( 2a \right)\left( 3b \right)\left( 2a-3b \right) $

$ =8{{x}^{3}}-27{{b}^{3}}-18ab\left( 2a-3b \right) $

$ =8{{x}^{3}}-27{{b}^{3}}-36{{a}^{2}}b+54a{{b}^{2}} $


  1. \[\mathbf{{{\left( \dfrac{3}{2}x+1 \right)}^{3}}}\]

Ans: By using the identity, \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]

$ {{\left( \dfrac{3}{2}x+1 \right)}^{3}}={{\left( \dfrac{3}{2}x \right)}^{3}}+{{\left( 1 \right)}^{3}}+3\left( \dfrac{3}{2}x \right)\left( 1 \right)\left( \dfrac{3}{2}x+1 \right) $ 

$ =\dfrac{27}{8}{{x}^{3}}+1+\dfrac{9}{2}x\left( \dfrac{3}{2}x+1 \right) $

$ =\dfrac{27}{8}{{x}^{3}}+1+\dfrac{27}{4}{{x}^{2}}+\dfrac{9}{2}x $ 

$ =\dfrac{27}{8}{{x}^{3}}+\dfrac{27}{4}{{x}^{2}}+\dfrac{9}{2}x+1 $


  1. \[\mathbf{{{\left( x-\dfrac{2}{3}y \right)}^{3}}}\]

Ans: By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

$ {{\left( x-\dfrac{2}{3}y \right)}^{3}}={{\left( x \right)}^{3}}-{{\left( \dfrac{2}{3}y \right)}^{3}}-3\left( x \right)\left( \dfrac{2}{3}y \right)\left( x-\dfrac{2}{3}y \right) $

$  ={{x}^{3}}-\dfrac{8}{27}{{y}^{3}}-2xy\left( x-\dfrac{2}{3}y \right) $

$ ={{x}^{3}}-\dfrac{8}{27}{{y}^{3}}-2{{x}^{2}}y+\dfrac{4}{3}x{{y}^{2}} $


7. Evaluate the following using suitable identities:

  1. \[\mathbf{{{\left( 99 \right)}^{3}}}\]

Ans: Here we can write \[{{\left( 99 \right)}^{3}}\] as \[{{\left( 100-1 \right)}^{3}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

$ {{\left( 100-1 \right)}^{3}}={{\left( 100 \right)}^{3}}-{{\left( 1 \right)}^{3}}-3\left( 100 \right)\left( 1 \right)\left( 100-1 \right) $

$ =1000000-1-300\left( 100-1 \right) $

$ =1000000-1-30000+300 $

$ =970299 $


  1. \[\mathbf{{{\left( 102 \right)}^{3}}}\]

Ans: Here we can write \[{{\left( 102 \right)}^{3}}\] as \[{{\left( 100+2 \right)}^{3}}\]

By using the identity, \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]

$ {{\left( 100+2 \right)}^{3}}={{\left( 100 \right)}^{3}}+{{\left( 2 \right)}^{3}}+3\left( 100 \right)\left( 2 \right)\left( 100+2 \right) $

$  =1000000+8+600\left( 100+2 \right) $

$ =1000000+8+60000+1200 $

$ =1061208 $


  1. \[\mathbf{{{\left( 998 \right)}^{3}}}\]

Ans: Here we can write \[{{\left( 998 \right)}^{3}}\] as \[{{\left( 1000-2 \right)}^{3}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

$ {{\left( 1000-2 \right)}^{3}}={{\left( 1000 \right)}^{3}}-{{\left( 2 \right)}^{3}}-3\left( 1000 \right)\left( 2 \right)\left( 1000-2 \right) $

 $ =1000000000-8-6000\left( 1000-2 \right) $

 $ =1000000000-8-6000000+12000 $

 $ =994011992 $


8. Factorise each of the following:

  1. \[\mathbf{8{{a}^{3}}+{{b}^{3}}+12{{a}^{2}}b+6a{{b}^{2}}}\]

Ans: Here we can write \[8{{a}^{3}}+{{b}^{3}}+12{{a}^{2}}b+6a{{b}^{2}}\] as 

\[{{\left( 2a \right)}^{3}}+{{\left( b \right)}^{3}}+3{{\left( 2a \right)}^{2}}\left( b \right)+3\left( 2a \right){{\left( b \right)}^{2}}\]

By using the identity, \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]

Here, \[x=2a,~~y=b\]

$ 8{{a}^{3}}+{{b}^{3}}+12{{a}^{2}}b+6a{{b}^{2}}={{\left( 2a \right)}^{3}}+{{\left( b \right)}^{3}}+3{{\left( 2a \right)}^{2}}\left( b \right)+3\left( 2a \right){{\left( b \right)}^{2}} $

 $ ={{\left( 2a+b \right)}^{3}} $

 $ =\left( 2a+b \right)\left( 2a+b \right)\left( 2a+b \right) $


  1. \[\mathbf{8{{a}^{3}}-{{b}^{3}}-12{{a}^{2}}b+6a{{b}^{2}}}\]

Ans: Here we can write \[8{{a}^{3}}-{{b}^{3}}-12{{a}^{2}}b+6a{{b}^{2}}\] as 

\[{{\left( 2a \right)}^{3}}-{{\left( b \right)}^{3}}-3{{\left( 2a \right)}^{2}}\left( b \right)+3\left( 2a \right){{\left( b \right)}^{2}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

Here, \[x=2a,~~y=b\]

$ 8{{a}^{3}}-{{b}^{3}}-12{{a}^{2}}b+6a{{b}^{2}}={{\left( 2a \right)}^{3}}-{{\left( b \right)}^{3}}-3{{\left( 2a \right)}^{2}}\left( b \right)+3\left( 2a \right){{\left( b \right)}^{2}} $

 $ ={{\left( 2a-b \right)}^{3}} $

 $ =\left( 2a-b \right)\left( 2a-b \right)\left( 2a-b \right) $


  1. \[\mathbf{27-125{{a}^{3}}-135a+225{{a}^{2}}}\]

Ans: Here we can write \[27-125{{a}^{3}}-135a+225{{a}^{2}}\] as 

\[{{\left( 3 \right)}^{3}}-{{\left( 5a \right)}^{3}}-3{{\left( 3 \right)}^{2}}\left( 5a \right)+3\left( 3 \right){{\left( 5a \right)}^{2}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

Here, \[x=3,~~y=5a\]

$ 27-125{{a}^{3}}-135a+225{{a}^{2}}={{\left( 3 \right)}^{3}}-{{\left( 5a \right)}^{3}}-3{{\left( 3 \right)}^{2}}\left( 5a \right)+3\left( 3 \right){{\left( 5a \right)}^{2}} $

 $ ={{\left( 3-5a \right)}^{3}} $

 $ =\left( 3-5a \right)\left( 3-5a \right)\left( 3-5a \right) $


  1. \[\mathbf{64{{a}^{3}}-27{{b}^{3}}-144{{a}^{2}}b+108a{{b}^{2}}}\]

Ans: Here we can write \[64{{a}^{3}}-27{{b}^{3}}-144{{a}^{2}}b+108a{{b}^{2}}\] as 

\[{{\left( 4a \right)}^{3}}-{{\left( 3b \right)}^{3}}-3{{\left( 4a \right)}^{2}}\left( 3b \right)+3\left( 4a \right){{\left( 3b \right)}^{2}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

Here, \[x=4a,~~y=3b\]

$ 64{{a}^{3}}-27{{b}^{3}}-144{{a}^{2}}b+108a{{b}^{2}}={{\left( 4a \right)}^{3}}-{{\left( 3b \right)}^{3}}-3{{\left( 4a \right)}^{2}}\left( 3b \right)+3\left( 4a \right){{\left( 3b \right)}^{2}} $ 

$ ={{\left( 4a-3b \right)}^{3}} $

$ =\left( 4a-3b \right)\left( 4a-3b \right)\left( 4a-3b \right) $


  1. \[\mathbf{27{{p}^{3}}-\dfrac{1}{216}-\dfrac{9}{2}{{p}^{2}}+\dfrac{1}{4}p}\]

Ans: Here we can write \[27{{p}^{3}}-\dfrac{1}{216}-\dfrac{9}{2}{{p}^{2}}+\dfrac{1}{4}p\] as 

\[{{\left( 3p \right)}^{3}}-{{\left( \dfrac{1}{6} \right)}^{3}}-3{{\left( 3p \right)}^{2}}\left( \dfrac{1}{6} \right)+3\left( 3p \right){{\left( \dfrac{1}{6} \right)}^{2}}\]

By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

Here, \[x=3p,~~y=\dfrac{1}{6}\]

$ 27{{p}^{3}}-\dfrac{1}{216}-\dfrac{9}{2}{{p}^{2}}+\dfrac{1}{4}p={{\left( 3p \right)}^{3}}-{{\left( \dfrac{1}{6} \right)}^{3}}-3{{\left( 3p \right)}^{2}}\left( \dfrac{1}{6} \right)+3\left( 3p \right){{\left( \dfrac{1}{6} \right)}^{2}} $

$ ={{\left( 3p-\dfrac{1}{6} \right)}^{3}} $

$  =\left( 3p-\dfrac{1}{6} \right)\left( 3p-\dfrac{1}{6} \right)\left( 3p-\dfrac{1}{6} \right) $


9. Verify:

  1. \[\mathbf{{{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)}\]

Ans: By using the identity, \[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]

\[{{x}^{3}}+{{y}^{3}}={{\left( x+y \right)}^{3}}-3xy\left( x+y \right)\]

\[{{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left[ {{\left( x+y \right)}^{2}}-3xy \right]\]Taking \[\left( x+y \right)\] common

$ {{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left[ \left( {{x}^{2}}+{{y}^{2}}+2xy \right)-3xy \right] $

$ \Rightarrow {{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}+{{y}^{2}}-xy \right) $

Hence, verified.


  1. \[\mathbf{{{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)}\]

Ans: By using the identity, \[{{\left( x-y \right)}^{3}}={{x}^{3}}-{{y}^{3}}-3xy\left( x-y \right)\]

\[{{x}^{3}}-{{y}^{3}}={{\left( x-y \right)}^{3}}+3xy\left( x+y \right)\]

\[{{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left[ {{\left( x-y \right)}^{2}}+3xy \right]\]

Taking \[\left( x-y \right)\] common

$ {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left[ \left( {{x}^{2}}+{{y}^{2}}-2xy \right)+3xy \right] $

$ \Rightarrow {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+{{y}^{2}}+xy \right) $

Hence, verified.


10. Factorise each of the following: 

  1. \[\mathbf{27{{y}^{3}}+125{{z}^{3}}}\]

Ans: Here \[27{{y}^{3}}+125{{z}^{3}}\] can be written as \[{{\left( 3y \right)}^{3}}+{{\left( 5z \right)}^{3}}\]

\[27{{y}^{3}}+125{{z}^{3}}={{\left( 3y \right)}^{3}}+{{\left( 5z \right)}^{3}}\]

As we know that, \[{{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)\]

\[27{{y}^{3}}+125{{z}^{3}}={{\left( 3y \right)}^{3}}+{{\left( 5z \right)}^{3}}\]

$ 27{{y}^{3}}+125{{z}^{3}}=\left( 3y+5z \right)\left[ {{\left( 3y \right)}^{2}}-\left( 3y \right)\left( 5z \right)+{{\left( 5z \right)}^{2}} \right] $

$ =\left( 3y+5z \right)\left( 9{{y}^{2}}-15yz+25{{z}^{2}} \right) $


  1. \[\mathbf{64{{m}^{3}}-343{{n}^{3}}}\]

Ans: Here \[64{{m}^{3}}-343{{n}^{3}}\] can be written as \[{{\left( 4y \right)}^{3}}-{{\left( 7z \right)}^{3}}\]

\[64{{m}^{3}}-343{{n}^{3}}={{\left( 4y \right)}^{3}}-{{\left( 7z \right)}^{3}}\]

As we know that, \[{{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\]

\[64{{m}^{3}}-343{{n}^{3}}={{\left( 4y \right)}^{3}}-{{\left( 7z \right)}^{3}}\]

$ 64{{m}^{3}}-343{{n}^{3}}=\left( 4m-7n \right)\left[ {{\left( 4m \right)}^{2}}+\left( 4m \right)\left( 7n \right)+{{\left( 7n \right)}^{2}} \right] $ 

$ =\left( 4m-7n \right)\left( 16{{m}^{2}}+28mn+49{{n}^{2}} \right) $


11. Factorise: \[\mathbf{27{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-9xyz}\]

Ans: Here \[27{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-9xyz\] can be written as \[{{\left( 3x \right)}^{3}}+{{\left( y \right)}^{3}}+{{\left( z \right)}^{3}}-3\left( 3x \right)\left( y \right)\left( z \right)\]

\[27{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-9xyz={{\left( 3x \right)}^{3}}+{{\left( y \right)}^{3}}+{{\left( z \right)}^{3}}-3\left( 3x \right)\left( y \right)\left( z \right)\] 

We know that, \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)\]

$ 27{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-9xyz={{\left( 3x \right)}^{3}}+{{\left( y \right)}^{3}}+{{\left( z \right)}^{3}}-3\left( 3x \right)\left( y \right)\left( z \right) $ 

$ =\left( 3x+y+z \right)\left[ {{\left( 3x \right)}^{2}}+{{y}^{2}}+{{z}^{2}}-3xy-yz-3xz \right] $

$ =\left( 3x+y+z \right)\left( 9{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-3xy-yz-3xz \right) $


12. Verify that \[\mathbf{{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\dfrac{1}{2}\left( x+y+z \right)\left[ {{\left( x-y \right)}^{2}}+{{\left( y-z \right)}^{2}}+\left( z-{{x}^{2}} \right) \right]}\]

Ans: As we know that, \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)\], 

Dividing the equation by \[\dfrac{1}{2}\] and multiply by \[2\]

$ \Rightarrow {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\dfrac{1}{2}\left( x+y+z \right)\left[ 2\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right) \right] $ 

$  =\dfrac{1}{2}\left( x+y+z \right)\left( 2{{x}^{2}}+2{{y}^{2}}+2{{z}^{2}}-2xy-2yz-2zx \right) $

$  =\dfrac{1}{2}\left( x+y+z \right)\left[ \left( {{x}^{2}}+{{x}^{2}}+{{y}^{2}}+{{y}^{2}}+{{z}^{2}}+{{z}^{2}}-2xy-2yz-2zx \right) \right] $

$ =\dfrac{1}{2}\left( x+y+z \right)\left[ \left( {{x}^{2}}+{{y}^{2}}-2xy \right)+\left( {{y}^{2}}+{{z}^{2}}-2yz \right)+\left( {{x}^{2}}+{{z}^{2}}-2zx \right) \right] $

$ =\dfrac{1}{2}\left( x+y+z \right)\left[ {{\left( x-y \right)}^{2}}+\left( y-z \right){}^{2}+{{\left( z-x \right)}^{2}} \right] $


13. If \[\mathbf{x+y+z=0}\], show that \[\mathbf{{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz}\]

Ans: As we know that \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right)\]

Given, \[x+y+z=0\], then

$ {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( x+y+z \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right) $

$ {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=\left( 0 \right)\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx \right) $ 

$  {{x}^{3}}+{{y}^{3}}+{{z}^{3}}-3xyz=0 $

$ {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz $

Hence, proved.


14. Without actually calculating the cubes, find the value of each of the following:

  1. \[\mathbf{{{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}}}\]

Ans: Let $ {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}}$

$ a=-12,~~~b=7,~~~c=5 $

We know that if, \[x+y+z=0\] then \[x{}^{3}+{{y}^{3}}+z{}^{3}=3xyz\]

Here, \[-12+7+5=0\]

$ \left( -12 \right){}^{3}+{{\left( 7 \right)}^{3}}+\left( 5 \right){}^{3}=3xyz $

$  =3\left( -12 \right)\left( 7 \right)\left( 5 \right) $

$  =-1260 $


  1. \[\mathbf{{{\left( 28 \right)}^{3}}+{{\left( -15 \right)}^{3}}+{{\left( -13 \right)}^{3}}}\]

Ans: Let $ {{\left( 28 \right)}^{3}}+{{\left( -15 \right)}^{3}}+{{\left( -13 \right)}^{3}} $

$a=28,~~~b=-15,~~~c=-13 $

We know that if, \[x+y+z=0\] then \[x{}^{3}+{{y}^{3}}+z{}^{3}=3xyz\]

Here, \[28-15-13=0\]

$ \left( 28 \right){}^{3}+{{\left( -15 \right)}^{3}}+\left( -13 \right){}^{3}=3xyz $

$ =3\left( 28 \right)\left( -15 \right)\left( -13 \right) $

$ =16380 $


15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:


Area:\[\mathbf{25{{a}^{2}}-35a+12}\]

Ans: Area: \[25{{a}^{2}}-35a+12\]

Using the splitting the middle term method,

We’ve to find a number whose sum \[=-35\]and product \[25\times 12=300\]

We’ll get \[-15\] and \[-20\] as the numbers \[\left[ -15-20=-35 \right]\] and \[\left[ -15\times \left( -20 \right)=300 \right]\]

$ 25{{a}^{2}}-35a+12 $

$ 25{{a}^{2}}-15a-20a+12 $

$ 5a\left( 5a-3 \right)-4\left( 5a-3 \right) $ 

$  \left( 5a-3 \right)\left( 5a-4 \right) $

Possible expression for length \[=\left( 5a-4 \right)\]

Possible expression for breadth \[=\left( 5a-3 \right)\]



Area:\[\mathbf{35{{y}^{2}}+13y-12}\]

Ans: Area: \[35{{y}^{2}}+13y-12\]

Using the splitting the middle term method,

We’ve to find a number whose sum \[=13\]and product \[35\times 12=420\]

We’ll get \[-15\] and \[28\] as the numbers \[\left[ -15+28=13 \right]\] and \[\left[ 15\times 28=420 \right]\]

$ 35{{y}^{2}}+13y-12 $

$ 35{{y}^{2}}-15a+28y-12 $

$ 5y\left( 7y-3 \right)+4\left( 7y-3 \right) $

$ \left( 7y-3 \right)\left( 5y+4 \right) $

Possible expression for length \[=\left( 5y+4 \right)\]

Possible expression for breadth \[=\left( 7y-3 \right)\]


16. What are the possible expressions for the dimensions of the cuboids whose volume are given below?

  1. Volume: \[\mathbf{3{{x}^{2}}-12x}\]

Ans: \[3{{x}^{2}}-12x\] can be written as \[3x\left( x-4 \right)\] by taking \[3x\] common from both the terms.

Possible expression for length \[=3\]

Possible expression for length \[=x\]

Possible expression for length \[=\left( x-4 \right)\]


  1. Volume: \[\mathbf{12k{{y}^{2}}+8ky-20k}\]

Ans: \[12k{{y}^{2}}+8ky-20k\] can be written as \[4k\left( 3{{y}^{2}}+2y-5 \right)\] by taking \[4k\] common from both the terms.

\[12k{{y}^{2}}+8ky-20k=4k\left( 3{{y}^{2}}+2y-5 \right)\]

Here, we can write \[4k\left( 3{{y}^{2}}+2y-5 \right)\] as \[4k\left( 3{{y}^{2}}+5y-3y-5 \right)\] by using the splitting the middle term method

$ 4k\left( 3{{y}^{2}}+5y-3y-5 \right) $

$  4k\left[ y\left( 3y+5 \right)-1\left( 3y+5 \right) \right] $

$  4k\left( 3y+5 \right)\left( y-1 \right) $

Possible expression for length \[=4k\]

Possible expression for length \[=\left( 3y+5 \right)\]

Possible expression for length \[=\left( y-1 \right)\]


Conclusion

Class 9 math exercise 2.4 in Chapter 2 is designed to solidify your understanding of factorizing polynomials through rigorous practice. By mastering these techniques, you build a strong foundation in algebra that will be beneficial in higher-level mathematics and various practical applications. The exercise helps to reinforce the concept that any polynomial can be expressed as a product of its factors, which is a critical skill for solving polynomial equations and simplifying complex expressions.


Class 9 Maths Chapter 2: Exercises Breakdown

Chapter 2 - Polynomials All Exercises in PDF Format

Exercise 2.1

5 Question & Solutions

Exercise 2.2

4 Questions & Solutions

Exercise 2.3

5 Questions & Solutions



Other Study Materials for CBSE Class 9 Maths Chapter 2



Chapter-Specific NCERT Solutions for Class 9 Maths

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Study Materials for CBSE Class 9 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4

1. What are the main algebraic identities used in solving Class 9 Maths Chapter 2 Polynomials Exercise 2.4?

The main algebraic identities applied in Exercise 2.4 include:

  • (x + a)(x + b) = x2 + (a + b)x + ab
  • (x + y)(x − y) = x2 − y2
  • (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
  • (x + y)3 = x3 + y3 + 3xy(x + y)
  • (x − y)3 = x3 − y3 − 3xy(x − y)
Understanding these ensures accurate and quick factorization and expansion in CBSE exams.

2. How do you determine whether a given expression is a polynomial as per the NCERT Solutions for Class 9 Maths Chapter 2?

An expression is a polynomial if:

  • It contains only non-negative integer powers of its variable(s).
  • It does not include variables in the denominator, negative, or fractional exponents.
  • Each term is the product of a constant and variables raised to whole number powers.
For example, 2x3 − x + 5 is a polynomial, but 3/x is not.

3. Why is it important to factorize polynomials in Class 9 Maths Chapter 2, and how does it help in solving equations?

Factorizing polynomials breaks them into simpler expressions (products of factors). This process is crucial because:

  • It helps solve polynomial equations by setting each factor to zero.
  • Makes it easier to simplify and compare expressions.
  • Supports finding the roots or zeros of a polynomial, a frequent CBSE question type.
Mastering factorization improves overall algebra skills for advanced maths topics.

4. What are the stepwise methods to expand (a + b + c)2 in NCERT Class 9 Polynomials Exercise 2.4?

To expand (a + b + c)2, follow these steps:

  • Apply the identity: (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca.
  • Substitute the given values for a, b, and c if present.
  • Calculate each squared and product term.
  • Add all results to obtain the expanded polynomial.
This method ensures full marks in descriptive CBSE questions as per 2025–26 standards.

5. How do you approach evaluating numbers like 103 × 107 using polynomial identities in this chapter?

To evaluate products such as 103 × 107:

  • Rewrite as (100 + 3)(100 + 7).
  • Use the identity (x + a)(x + b) = x2 + (a + b)x + ab with x = 100, a = 3, b = 7.
  • Solve: 1002 + (3+7) × 100 + 3×7 = 10,000 + 1,000 + 21 = 11,021.
This approach is often tested to check students' understanding of identities beyond algebraic symbols.

6. What types of questions are typically found in Exercise 2.4 of NCERT Class 9 Maths Chapter 2 Polynomials?

Exercise 2.4 typically includes:

  • Expansion of algebraic expressions using standard identities
  • Factorization of quadratic and cubic polynomials
  • Application of identities to simplify numerical problems
  • Verification of algebraic identities by substitution
Practicing these thoroughly prepares students for similar CBSE exam problems.

7. Can two different expressions have the same factors in Class 9 polynomial factorization? Explain with an example.

Yes, two different expressions can share the same factors. For instance:

  • 9x2 + 6xy + y2 = (3x + y)2
  • 9x2 + 12xy + 4y2 = (3x + 2y)2
While both are quadratic and factorize into a binomial square, the specifics of the constant and coefficients produce unique or common factors, depending on the given polynomial's structure.

8. What common mistakes do students make while applying algebraic identities in Class 9 Chapter 2 NCERT Solutions?

Common mistakes include:

  • Incorrect substitution of coefficients or signs
  • Mixing up identities (e.g., using (a + b)2 instead of (a − b)2)
  • Failing to expand or factorize all terms
  • Arithmetic errors during calculations
Always match the given expression with the correct identity and double-check substitutions to avoid marks loss.

9. How can mastering polynomial factorization in Class 9 help with future CBSE board maths?

Mastering polynomial factorization in Class 9 builds strong algebraic fundamentals, which are essential in:

  • Solving higher-degree equations in Classes 10–12
  • Understanding quadratic equations and calculus basics
  • Quickly simplifying complex expressions in competitive exams
It is a recurring skill in CBSE patterns and a gateway to advanced mathematics topics.

10. What if a given polynomial cannot be factorized using standard identities? What method should a student use as per CBSE Class 9 guidelines?

If a polynomial cannot be factorized by identities, use:

  • Splitting the middle term for quadratic polynomials
  • Taking out common factors from all terms
  • Trial and error for grouping terms or synthetic division for higher-order polynomials
This systematic approach covers nearly all polynomial factorization questions in the CBSE Class 9 syllabus.

11. What are constant, linear, quadratic, cubic, and biquadratic polynomials? Provide one example for each from Class 9 Chapter 2.

  • Constant polynomial: No variable, e.g., 5
  • Linear polynomial: Degree 1, e.g., x + 2
  • Quadratic polynomial: Degree 2, e.g., x2 − x + 3
  • Cubic polynomial: Degree 3, e.g., 2x3 − x + 1
  • Biquadratic polynomial: Degree 4, e.g., x4 + 2x2 − x + 3
These categories help classify and solve polynomials appropriately in exams.

12. How is the degree of a polynomial determined in Class 9 NCERT Maths Chapter 2?

The degree of a polynomial is the highest power of the variable in its expression.

  • For example, in 4x3 + 2x2 − 7, degree is 3.
  • For y2 − 5y + 6, degree is 2.
Identifying the degree helps in proper classification and choosing the right method to solve or factorize.

13. Why do CBSE exams often focus on verifying algebraic identities, and how should students write such answers?

CBSE exams test identity verification to:

  • Gauge conceptual understanding, not just memorization
  • Promote stepwise logical reasoning
  • Build skills in checking correctness of algebraic work
Students should:
  • Clearly state the identity to be proved
  • Explain each substitution and simplification step
  • Solve both sides and show they are equal
This structured approach earns maximum marks.

14. In Class 9 Chapter 2 NCERT Solutions, how do you justify if three numbers are roots of a cubic polynomial?

To check if three numbers are roots of a cubic polynomial:

  • Substitute each number into the polynomial expression.
  • If the result is zero for all, they are roots.
This process confirms solutions based on definition and is essential for such CBSE-style questions.

15. FUQ: How would polynomial factorization methods change if an expression contained negative or fractional exponents?

Polynomials must only contain non-negative integer exponents. If an expression includes negative or fractional powers, it is not a polynomial and cannot be factorized using standard polynomial techniques (identities, splitting middle term, etc.). Instead, students would need to use algebraic methods for rational expressions or alternate techniques, but these are not part of the Class 9 CBSE polynomial syllabus.