Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

RD Sharma Class 12 Solutions Chapter 29 - The Plane (Ex 29.9) Exercise 29.9

ffImage
banner

RD Sharma Class 12 Solutions Chapter 29 - The Plane (Ex 29.9) Exercise 29.9 - Free PDF

Free PDF download of RD Sharma Class 12 Solutions Chapter 29 - The Plane Exercise 29.9 solved by Expert Mathematics Teachers on Vedantu.com. All Chapter 29 - The Plane Ex 29.9 Questions with Solutions for RD Sharma Class 12 Maths to help you to revise the complete Syllabus and Score More marks. Register for online coaching for IIT JEE (Mains & Advanced) and other engineering entrance exams.


RD Sharma Class 12 Solutions Chapter 29 is a bible for the students appearing for their Class 12 Maths exam. The solutions in this PDF are sorted in a student-friendly way. These solutions can aid the students in preparing for their maths exams. Experts who work with us have single-handedly made sure that students don’t find any issue while solving this exercise. The solutions are very well presented, in a step-by-step manner for better understanding. So, let’s move forward by understanding the basics of the chapter first.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Topics covered under RD Sharma Class 12 Solutions Chapter 29 - The plane

What is a plane and how can it be determined in mathematical language?

A plane can be determined very easily, If any of the following is known,

  • The plane's normal and its distance from the origin are supplied, i.e., the plane's equation in normal form.

  • It is perpendicular to a specified direction and goes through a point.

  • It goes through three non-collinear sites that are specified.


Let’s now try to understand the equation of a plane in very simple language:

  •  The vector form of a plane equation in normal form is r. n^=d

  • Where r is the point's position vector on the specified plane, n is the normal unit vector from the origin to the plane, and d is the normal unit vector's length from the origin to the plane.

  •  lx+my+nz=d is the Cartesian form of the plane equation in normal form.

  • P(x,y,z) is any point on the provided plane, n is the normal unit vector from the origin to the plane, and l,m,n are the normal unit vector's direction cosines.

  • If the vector equation of the plane is r.(ai+bj+ck)=d, then the Cartesian equation of the plane is (ax+by+cz)=d. The direction ratios of the normal to the plane are a,b,c.


Equation of a plane passing through three collinear points

The vector form of the equation of the plane is:

 

Important: (r −a ).[(b −a)×(c−a)]=0 

 

Here a, b, c are the position vectors of the three non-collinear points on the plane, whereas, r  is the position vector of any point on the given plane.

WhatsApp Banner

FAQs on RD Sharma Class 12 Solutions Chapter 29 - The Plane (Ex 29.9) Exercise 29.9

1. What are the benefits for RD Sharma Class 12 Solutions Chapter 29 - The Plane?

There are several benefits to using RD Sharma Class 12 Solutions Chapter 12 - The plane:

  • A thorough understanding of the concepts included in the exercise

  • More practice of the questions based on the NCERT exercises

  • Several different types of questions to solve to be fully prepared for your Class 12 Math exam

  • Solutions are available just in case one finds himself/herself stuck in between a problem

  • A different yet simple way of solving problems