Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Lines and Angles Class 7 Notes CBSE Maths Chapter 5 (Free PDF Download)

ffImage
banner

Revision Notes for CBSE Class 7 Maths Chapter 5 - Free PDF Download

Revision Notes Class 7 Maths Chapters 5 for Lines and Angles is available in a PDF format for free download at Vedantu as a part of Class 7 Maths Notes for Quick Revision. The CBSE Class 7 Maths Notes Chapter 5 Lines and Angles given here are prepared lucidly considering the board pattern and guidelines. Read below to discover all that is included in Maths Class 7 Lines and Angles Notes.

Access Class 7 Mathematics Chapter 5 – Lines and Angles Notes

Definitions:

a. Line segment: A line with definite end points is called a line segment. It is denoted as $\overline{AB}$.

b. Line: A line segment when extended infinitely from both ends, we get a line. It is denoted as $\overleftrightarrow{AB}$.

c. Ray: A line with one endpoint is called a ray. It is denoted by $\overrightarrow{AB}$.

d. Angle: When two lines or line segments intersect or meet at a common point, an angle is formed. For example, in the figure below, we can see the angles formed by the lines $\overleftrightarrow{PQ}$ and $\overleftrightarrow{RS}$ are $\angle POS,\angle SOQ,\angle QOR$ and $\angle ROP$.


Example of an Angle


Related Angles:

a. Complementary angles: Two angles having the sum of their measures equal to ${{90}^{\circ }}$ are called complementary angles. When two angles are complementary, one angle is called the complement of another angle. An example has been shown below.

Complementary angles

b. Supplementary angles: Two angles having the sum of their measures equal to ${{180}^{\circ }}$ are called supplementary angles. When two angles are complementary, one angle is called the supplement of another angle. An example has been shown below.

Supplementary angles

c. Adjacent angle: The pair of angles present next to each other such that they have a common vertex, one common arm and the non-common arm lies on either side of the common arm. In the diagram given below, $\angle 1$ and $\angle 2$ are adjacent angles.

Adjacent angle

d. Linear pair: The adjacent angles who are supplementary to each other are called the linear pairs. The non-common arms of these angles are rays moving in opposite directions. In the diagram given below, $\angle 1$ and $\angle 2$ are linear pair angles.

Linear pair

e. Vertically opposite angles: Two lines that cross each other, four angles are formed as shown in the diagram below.

Vertically opposite angles

Here, $\angle 1\And \angle 3$ and $\angle 2\And \angle 4$ are vertically opposite to each other.

Pairs of Lines:

a. Intersecting lines: two lines when crosses each other at only one point, then they are called the intersecting lines and that point is called the point intersection. As in the diagram below, $l$ and $m$are intersecting lines with their point of intersection $A$.

b. Transversal: When two or more distinct lines are intersected by a common line, then that line is called a transversal. As in the figure below, lines $l$ and $m$ are intersected by a common line $p$ which is the transversal. This transversion creates eight angles.

Transversal

The relation between the eight angles have been tabulated below.

Interior angles

$\angle 3,\angle 4,\angle 5,\angle 6$

Exterior angles

$\angle 1,\angle 2,\angle 7,\angle 8$

Pairs of corresponding angles

$\angle 1\And \angle 5,\angle 2\And \angle 6,\angle 3\And \angle 7,\angle 4\And \angle 8$

Pairs of alternate interior angles

$\angle 3\And \angle 6,\angle 4\And \angle 5$

Pairs of alternate exterior angles

$\angle 1\And \angle 8,\angle 2\And \angle 7$

Pairs of interior angles on the same side of transversal

$\angle 3\And \angle 5,\angle 4\And \angle 6$

Traversal of Parallel Lines:

When a pair of parallel lines $l$ and $m$ are intersected by a line $t$, then following properties can be observed.

Traversal of parallel lines

1. Each pair of corresponding angles are equal. e.g., $\angle 7=\angle 8,\angle 1=\angle 2$, etc.

2. Each pair of alternate interior angles are equal. e.g., $\angle 3=\angle 8,\angle 1=\angle 6$, etc.

3. Each pair of interior angles on the same side of the transversal are supplementary to each other. e.g., $\angle 1+\angle 8={{180}^{\circ }}$, etc.


Introduction To Important Terms

  • Lines Segment

A line segment is defined as a line drawn having two endpoints and it is denoted by AB¯.

(Image will be Uploaded Soon)

(Image will be Uploaded Soon) 

  • Line                                             

A line does not have any endpoints on either side and it is denoted by AB←→.

(Image will be Uploaded Soon)

(Image will be Uploaded Soon) 

If a single straight line passes through 3 or more points, the points are called collinear.

P, Q, R are collinear points.

(Image will be Uploaded Soon)

(Image will be Uploaded Soon)

  • Ray

A ray is described as a line which has one endpoint and is endless from another side. 

(Image will be Uploaded Soon)

(Image will be Uploaded Soon) 

Pictorial Illustrations and Differentiation Between Line, LineSegment, Ray

You now already know that a line segment consists of two endpoints. If we stretch out the two endpoints in either direction endlessly, we will obtain a line. Thus, remember that a line has no endpoints. On the contrary, a ray consists of one endpoint (starting point). When lines or line segments meet, then an angle is formed. Refer to the image below to understand the difference clearly:-

(Image will be Uploaded Soon)

(Image will be Uploaded Soon)                 

  • Intersecting Line

If two distinct lines cross or meet at a point, then they are termed intersecting lines.

  • Parallel Lines

Lines that are at the same distance apart from each other and never bisect anywhere in a plane are called the parallel lines.

  • Traversal Line

If a line bisects two or more lines at different points it is known as the traversal line

  • Angle

Angles formed are made up of two rays which begin from a common point.

About CBSE Solutions for Lines and Angles Class 7 Notes

In Class 7 Revision Notes Maths Ch 5 available at Vedantu, you will study various types of angles and their applications in geometrical mathematics. Read below about the types of angles you will learn in Class 7 Maths Revision Notes Chapter 5:

Types of Angles

  • Acute Angle

An angle which is smaller than 90 degrees is called an acute angle.

  • Obtuse Angle

An angle that measures more than 90 degrees but is less than 180 degrees is called an obtuse angle.

  • Right Angle

An angle formed at exactly 90 degrees is called a right angle.

  • Straight Angle

An angle formed at 180 degrees is called a straight angle. An angle so formed is developed by a straight line.

  • Reflex Angle

An angle more than 180 degrees but less than 270 degrees is called a reflex angle.

  • Full Angle

A full angle is an angle that measures complete 360°.

Other Types of Angles

  • Complementary Angles: The sum of the measures of two angles comes out to be 90°, the angles formed are what we call the complementary angles.

e.g. ∠A = 65°, ∠B = 25°

∠A + ∠B = 65° + 25° = 90°

  • Supplementary Angles: When the sum of the measures of the two angles is 180° and then such pairs of angles are known as supplementary angles.

e.g. ∠A = 140°, ∠B = 40°

∠A + ∠B = 140° + 40° = 180°

  • Adjacent Angles: These angles are that which consists of a common vertex, a common arm and non-common arms on either side of the common arm are called adjacent angles. Adjacent angles have no common interior points.

  • Linear Pair: A pair of adjacent angles whose non-common sides make for opposite rays is called a linear pair.

  • Vertically Opposite Angles: when two lines bisect each other, the vertically opposite angles so formed are equivalent.

Solved Examples

Example:

Find the angle which will be equal to its complement.

Solution:

Assuming the two equal complementary angles be x

Thus, x + x = 90°

Or, 2x = 90°

And x = 90/2 = 45°

Thus, 45 is equivalent to its complement.

Example:

If in a plane figure AB∥CD with ∠4 = 50° and ∠5 = 45°, then identify all the three angles of the ∆ABC.

Solution:

Given:  AB ∥ CD

∠4 = 60° and ∠5 = 40°

In order to identify: ∠1, ∠2 and ∠3

Calculation: ∠1 + ∠4 + ∠5 = 180° (sum of angles forming a straight angle)

Thus, ∠1 = 180°- 60°- 40°

∠1 = 80°

Benefits of Solving Lines and Angles Class 7 Notes CBSE Maths Chapters 5 (Free PDF Download)

  • Solving "Lines and Angles Class 7 Notes CBSE Maths Chapter 5 (Free PDF Download)" offers several noteworthy benefits to students. 

  • Firstly, it promotes a thorough understanding of fundamental geometric concepts related to lines and angles, laying a solid foundation for advanced mathematical studies. 

  • Secondly, by providing a diverse range of problems and exercises, these notes enhance students' problem-solving and critical-thinking abilities. They encourage students to apply geometric principles to practical scenarios, fostering logical reasoning skills. 

  • Thirdly, these notes are a valuable resource for exam preparation, as they cover the entire chapter and offer solutions to exercises commonly found in assessments. 

  • They facilitate visual learning, aiding students in comprehending geometric shapes and properties. Overall, these notes promote not only academic success but also the development of essential life skills applicable in various real-world situations.


Prepare Well for Lines and Angles Class 7 Notes CBSE Maths Chapter 5 

In conclusion, "Lines and Angles Class 7 Notes CBSE Maths Chapter 5 (Free PDF Download)" serves as an invaluable educational resource. This chapter is fundamental in building students' geometric understanding and problem-solving skills. The notes provide clarity on geometric principles, aiding in a deeper comprehension of lines and angles. They are a valuable tool for exam preparation, offering comprehensive coverage of the chapter's content. Additionally, these notes encourage critical thinking, logical reasoning, and the practical application of geometry in various fields. Their accessibility as free PDF downloads ensures that quality education is accessible to all, making them an essential companion for students on their mathematical journey.



Related Study Materials for Class 7 Maths Chapter 5 Lines and Angles


Chapter-wise Links for Class 7 Maths Notes


Important Study Materials for Class 7 Maths

WhatsApp Banner

FAQs on Lines and Angles Class 7 Notes CBSE Maths Chapter 5 (Free PDF Download)

1. What are the key concepts to revise in Class 7 Maths Chapter 5 – Lines and Angles?

The core concepts to revise include line, ray, line segment, intersecting lines, parallel lines, transversal, and the different types of angles (acute, obtuse, right, straight, reflex, full angle). Be sure to also understand complementary and supplementary angles, adjacent angles, linear pairs, vertically opposite angles, and how angles relate when a transversal crosses parallel lines.

2. How can I quickly summarise the differences between a line, a ray, and a line segment?

  • Line: Extends without end in both directions; no fixed endpoints.
  • Ray: Starts at one fixed point and extends endlessly in one direction.
  • Line Segment: Has two definite endpoints; the shortest distance between those points.

3. What strategy should I follow to revise angle relationships formed when a transversal crosses parallel lines?

Focus on identifying corresponding angles, alternate interior angles, alternate exterior angles, and interior angles on the same side of the transversal. Practice labeling diagrams and apply rules: corresponding angles are equal, alternate interior angles are equal, and the sum of interior angles on the same side of transversal is 180°.

4. Why is understanding adjacent angles and linear pairs important for quick revision?

Knowing adjacent angles (angles sharing a common vertex and arm, with non-common arms on opposite sides) helps in quickly solving problems involving multiple angles at a point. Linear pairs are adjacent angles whose non-common sides form a straight line, and their sum is always 180°, which is frequently tested in objective questions and proofs.

5. How can a concept map enhance revision for Lines and Angles in Class 7?

A concept map visually links core definitions (line, ray) to types of lines (parallel, intersecting) and angles, then further connects to angle relationships and properties. This aids quick recall and shows how concepts interrelate, making last-minute revision more effective.

6. What are common misconceptions students have when revising this chapter, and how should they be avoided?

  • Confusing corresponding angles with alternate angles.
  • Not recognising that linear pairs always sum to 180°.
  • Forgetting that vertically opposite angles are always equal.
  • Mistaking supplementary and complementary angles (supplementary sums to 180°, complementary to 90°).
  • To avoid these: label diagrams precisely and verify the angle relationships as per definitions.

7. How are the properties of angles used in solving problems about triangles in Chapter 5?

Angle properties like the sum of angles on a straight line (180°), vertically opposite angles, and relationships created by transversals are foundational for proving triangle properties, such as the sum of interior angles of a triangle being 180° or finding unknown angles in geometric figures.

8. What is the recommended order to revise topics in Chapter 5 for maximum retention?

Start with the basic terms (line, segment, ray), then move to types of lines (parallel, intersecting), next study types of angles, and finally, focus on angle relationships with transversals. End with practice problems that blend all concepts.

9. How do key terms like "transversal" and "corresponding angles" help in solving MCQs quickly?

Identifying a transversal alerts you to use special angle properties (like corresponding or alternate angles). Recognising key terms in a question helps you instantly recall the relevant rule, speeding up MCQ solving without re-deriving relationships each time.

10. What effective techniques can be used for rapid last-minute revision of Lines and Angles for Class 7 exams?

  • Review prepared concept maps and summaries.
  • Focus on diagrams, redrawing them from memory.
  • Practice quick identification of angle pairs in sample figures.
  • Attempt a few mixed revision questions that cover all angle relationships.
  • Use oral quizzes or flashcards for angle property definitions.